Loading…

Complex Langevin Simulation of a Random Matrix Model at Nonzero Chemical Potential

In this paper we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived ana...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-12
Main Authors: Bloch, J, Glesaaen, J, Verbaarschot, J J M, Zafeiropoulos, S
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bloch, J
Glesaaen, J
Verbaarschot, J J M
Zafeiropoulos, S
description In this paper we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass is inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling cooling solves the convergence problems as was shown before in the literature.
doi_str_mv 10.48550/arxiv.1712.07514
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071967676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071967676</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-36462b761af7f49cbde1055c9c160fb52ef0d69d4be730950bcad8ef3d7e96b33</originalsourceid><addsrcrecordid>eNotjVtLwzAYQIMgOOZ-gG8BnztzaZL2UYo36FTm3sfX5otmtMls01H89Q6U83DeziHkhrN1XijF7mCY_WnNDRdrZhTPL8hCSMmzIhfiiqzG8cAYE9oIpeSCbKvYHzucaQ3hE08-0A_fTx0kHwONjgLdQrCxpxtIg5_pJlrsKCT6GsMPDpFWX9j7Fjr6HhOG5KG7JpcOuhFX_16S3ePDrnrO6renl-q-zkAJnUmda9EYzcEZl5dtY5Ezpdqy5Zq5Rgl0zOrS5g0ayUrFmhZsgU5ag6VupFyS27_scYjfE45pf4jTEM7HvWCGl9qckb-IuVFf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071967676</pqid></control><display><type>article</type><title>Complex Langevin Simulation of a Random Matrix Model at Nonzero Chemical Potential</title><source>Publicly Available Content Database</source><creator>Bloch, J ; Glesaaen, J ; Verbaarschot, J J M ; Zafeiropoulos, S</creator><creatorcontrib>Bloch, J ; Glesaaen, J ; Verbaarschot, J J M ; Zafeiropoulos, S</creatorcontrib><description>In this paper we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass is inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling cooling solves the convergence problems as was shown before in the literature.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1712.07514</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Chemical potential ; Computer simulation ; Convergence ; Cooling ; Deformation ; Eigenvalues ; Mathematical models ; Matrix ; Organic chemistry ; Phase transitions</subject><ispartof>arXiv.org, 2017-12</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071967676?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Bloch, J</creatorcontrib><creatorcontrib>Glesaaen, J</creatorcontrib><creatorcontrib>Verbaarschot, J J M</creatorcontrib><creatorcontrib>Zafeiropoulos, S</creatorcontrib><title>Complex Langevin Simulation of a Random Matrix Model at Nonzero Chemical Potential</title><title>arXiv.org</title><description>In this paper we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass is inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling cooling solves the convergence problems as was shown before in the literature.</description><subject>Algorithms</subject><subject>Chemical potential</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Cooling</subject><subject>Deformation</subject><subject>Eigenvalues</subject><subject>Mathematical models</subject><subject>Matrix</subject><subject>Organic chemistry</subject><subject>Phase transitions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjVtLwzAYQIMgOOZ-gG8BnztzaZL2UYo36FTm3sfX5otmtMls01H89Q6U83DeziHkhrN1XijF7mCY_WnNDRdrZhTPL8hCSMmzIhfiiqzG8cAYE9oIpeSCbKvYHzucaQ3hE08-0A_fTx0kHwONjgLdQrCxpxtIg5_pJlrsKCT6GsMPDpFWX9j7Fjr6HhOG5KG7JpcOuhFX_16S3ePDrnrO6renl-q-zkAJnUmda9EYzcEZl5dtY5Ezpdqy5Zq5Rgl0zOrS5g0ayUrFmhZsgU5ag6VupFyS27_scYjfE45pf4jTEM7HvWCGl9qckb-IuVFf</recordid><startdate>20171219</startdate><enddate>20171219</enddate><creator>Bloch, J</creator><creator>Glesaaen, J</creator><creator>Verbaarschot, J J M</creator><creator>Zafeiropoulos, S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171219</creationdate><title>Complex Langevin Simulation of a Random Matrix Model at Nonzero Chemical Potential</title><author>Bloch, J ; Glesaaen, J ; Verbaarschot, J J M ; Zafeiropoulos, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-36462b761af7f49cbde1055c9c160fb52ef0d69d4be730950bcad8ef3d7e96b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Chemical potential</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Cooling</topic><topic>Deformation</topic><topic>Eigenvalues</topic><topic>Mathematical models</topic><topic>Matrix</topic><topic>Organic chemistry</topic><topic>Phase transitions</topic><toplevel>online_resources</toplevel><creatorcontrib>Bloch, J</creatorcontrib><creatorcontrib>Glesaaen, J</creatorcontrib><creatorcontrib>Verbaarschot, J J M</creatorcontrib><creatorcontrib>Zafeiropoulos, S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bloch, J</au><au>Glesaaen, J</au><au>Verbaarschot, J J M</au><au>Zafeiropoulos, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Langevin Simulation of a Random Matrix Model at Nonzero Chemical Potential</atitle><jtitle>arXiv.org</jtitle><date>2017-12-19</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>In this paper we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass is inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling cooling solves the convergence problems as was shown before in the literature.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1712.07514</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071967676
source Publicly Available Content Database
subjects Algorithms
Chemical potential
Computer simulation
Convergence
Cooling
Deformation
Eigenvalues
Mathematical models
Matrix
Organic chemistry
Phase transitions
title Complex Langevin Simulation of a Random Matrix Model at Nonzero Chemical Potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Langevin%20Simulation%20of%20a%20Random%20Matrix%20Model%20at%20Nonzero%20Chemical%20Potential&rft.jtitle=arXiv.org&rft.au=Bloch,%20J&rft.date=2017-12-19&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1712.07514&rft_dat=%3Cproquest%3E2071967676%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-36462b761af7f49cbde1055c9c160fb52ef0d69d4be730950bcad8ef3d7e96b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071967676&rft_id=info:pmid/&rfr_iscdi=true