Loading…

The optimal search on graph by continuous-time quantum walks

Chakraborty and Leonardo have shown that a spatial search by quantum walk is optimal for almost all graphs. However, we observed that on some graphs, certain states cannot be searched optimally. We present a method for constructing an optimal graph that searches an arbitrary state and provides the o...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-04
Main Authors: Li, Xi, Chen, Hanwu, Ruan, Yue, Xu, Mengke, Tang, Jianing, Liu, Zhihao
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Xi
Chen, Hanwu
Ruan, Yue
Xu, Mengke
Tang, Jianing
Liu, Zhihao
description Chakraborty and Leonardo have shown that a spatial search by quantum walk is optimal for almost all graphs. However, we observed that on some graphs, certain states cannot be searched optimally. We present a method for constructing an optimal graph that searches an arbitrary state and provides the optimal condition. We also analyze the monotonicity of the search performance and conclude that the search performance can be improved by adding edges.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071979536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071979536</sourcerecordid><originalsourceid>FETCH-proquest_journals_20719795363</originalsourceid><addsrcrecordid>eNqNytEKgjAUgOERBEn5Dge6FuaWLqG7KHoA7-Ukq2m66c5G9PZ50QN09V_834olQso8Ox6E2LCUqOeci1KJopAJO9VGg5tCN-IApNG3BpyFp8fJwP0DrbOhs9FFyhajYY5oQxzhjcOLdmz9wIF0-uuW7a-X-nzLJu_mqCk0vYveLqsRXOWVqgpZyv_UF05UN9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071979536</pqid></control><display><type>article</type><title>The optimal search on graph by continuous-time quantum walks</title><source>ProQuest - Publicly Available Content Database</source><creator>Li, Xi ; Chen, Hanwu ; Ruan, Yue ; Xu, Mengke ; Tang, Jianing ; Liu, Zhihao</creator><creatorcontrib>Li, Xi ; Chen, Hanwu ; Ruan, Yue ; Xu, Mengke ; Tang, Jianing ; Liu, Zhihao</creatorcontrib><description>Chakraborty and Leonardo have shown that a spatial search by quantum walk is optimal for almost all graphs. However, we observed that on some graphs, certain states cannot be searched optimally. We present a method for constructing an optimal graph that searches an arbitrary state and provides the optimal condition. We also analyze the monotonicity of the search performance and conclude that the search performance can be improved by adding edges.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graphs ; Optimization ; Searching</subject><ispartof>arXiv.org, 2018-04</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071979536?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Li, Xi</creatorcontrib><creatorcontrib>Chen, Hanwu</creatorcontrib><creatorcontrib>Ruan, Yue</creatorcontrib><creatorcontrib>Xu, Mengke</creatorcontrib><creatorcontrib>Tang, Jianing</creatorcontrib><creatorcontrib>Liu, Zhihao</creatorcontrib><title>The optimal search on graph by continuous-time quantum walks</title><title>arXiv.org</title><description>Chakraborty and Leonardo have shown that a spatial search by quantum walk is optimal for almost all graphs. However, we observed that on some graphs, certain states cannot be searched optimally. We present a method for constructing an optimal graph that searches an arbitrary state and provides the optimal condition. We also analyze the monotonicity of the search performance and conclude that the search performance can be improved by adding edges.</description><subject>Graphs</subject><subject>Optimization</subject><subject>Searching</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNytEKgjAUgOERBEn5Dge6FuaWLqG7KHoA7-Ukq2m66c5G9PZ50QN09V_834olQso8Ox6E2LCUqOeci1KJopAJO9VGg5tCN-IApNG3BpyFp8fJwP0DrbOhs9FFyhajYY5oQxzhjcOLdmz9wIF0-uuW7a-X-nzLJu_mqCk0vYveLqsRXOWVqgpZyv_UF05UN9o</recordid><startdate>20180409</startdate><enddate>20180409</enddate><creator>Li, Xi</creator><creator>Chen, Hanwu</creator><creator>Ruan, Yue</creator><creator>Xu, Mengke</creator><creator>Tang, Jianing</creator><creator>Liu, Zhihao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180409</creationdate><title>The optimal search on graph by continuous-time quantum walks</title><author>Li, Xi ; Chen, Hanwu ; Ruan, Yue ; Xu, Mengke ; Tang, Jianing ; Liu, Zhihao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20719795363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Graphs</topic><topic>Optimization</topic><topic>Searching</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Xi</creatorcontrib><creatorcontrib>Chen, Hanwu</creatorcontrib><creatorcontrib>Ruan, Yue</creatorcontrib><creatorcontrib>Xu, Mengke</creatorcontrib><creatorcontrib>Tang, Jianing</creatorcontrib><creatorcontrib>Liu, Zhihao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xi</au><au>Chen, Hanwu</au><au>Ruan, Yue</au><au>Xu, Mengke</au><au>Tang, Jianing</au><au>Liu, Zhihao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The optimal search on graph by continuous-time quantum walks</atitle><jtitle>arXiv.org</jtitle><date>2018-04-09</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Chakraborty and Leonardo have shown that a spatial search by quantum walk is optimal for almost all graphs. However, we observed that on some graphs, certain states cannot be searched optimally. We present a method for constructing an optimal graph that searches an arbitrary state and provides the optimal condition. We also analyze the monotonicity of the search performance and conclude that the search performance can be improved by adding edges.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071979536
source ProQuest - Publicly Available Content Database
subjects Graphs
Optimization
Searching
title The optimal search on graph by continuous-time quantum walks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20optimal%20search%20on%20graph%20by%20continuous-time%20quantum%20walks&rft.jtitle=arXiv.org&rft.au=Li,%20Xi&rft.date=2018-04-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071979536%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20719795363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071979536&rft_id=info:pmid/&rfr_iscdi=true