Loading…
The optimal search on graph by continuous-time quantum walks
Chakraborty and Leonardo have shown that a spatial search by quantum walk is optimal for almost all graphs. However, we observed that on some graphs, certain states cannot be searched optimally. We present a method for constructing an optimal graph that searches an arbitrary state and provides the o...
Saved in:
Published in: | arXiv.org 2018-04 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Xi Chen, Hanwu Ruan, Yue Xu, Mengke Tang, Jianing Liu, Zhihao |
description | Chakraborty and Leonardo have shown that a spatial search by quantum walk is optimal for almost all graphs. However, we observed that on some graphs, certain states cannot be searched optimally. We present a method for constructing an optimal graph that searches an arbitrary state and provides the optimal condition. We also analyze the monotonicity of the search performance and conclude that the search performance can be improved by adding edges. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071979536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071979536</sourcerecordid><originalsourceid>FETCH-proquest_journals_20719795363</originalsourceid><addsrcrecordid>eNqNytEKgjAUgOERBEn5Dge6FuaWLqG7KHoA7-Ukq2m66c5G9PZ50QN09V_834olQso8Ox6E2LCUqOeci1KJopAJO9VGg5tCN-IApNG3BpyFp8fJwP0DrbOhs9FFyhajYY5oQxzhjcOLdmz9wIF0-uuW7a-X-nzLJu_mqCk0vYveLqsRXOWVqgpZyv_UF05UN9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071979536</pqid></control><display><type>article</type><title>The optimal search on graph by continuous-time quantum walks</title><source>ProQuest - Publicly Available Content Database</source><creator>Li, Xi ; Chen, Hanwu ; Ruan, Yue ; Xu, Mengke ; Tang, Jianing ; Liu, Zhihao</creator><creatorcontrib>Li, Xi ; Chen, Hanwu ; Ruan, Yue ; Xu, Mengke ; Tang, Jianing ; Liu, Zhihao</creatorcontrib><description>Chakraborty and Leonardo have shown that a spatial search by quantum walk is optimal for almost all graphs. However, we observed that on some graphs, certain states cannot be searched optimally. We present a method for constructing an optimal graph that searches an arbitrary state and provides the optimal condition. We also analyze the monotonicity of the search performance and conclude that the search performance can be improved by adding edges.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graphs ; Optimization ; Searching</subject><ispartof>arXiv.org, 2018-04</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071979536?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Li, Xi</creatorcontrib><creatorcontrib>Chen, Hanwu</creatorcontrib><creatorcontrib>Ruan, Yue</creatorcontrib><creatorcontrib>Xu, Mengke</creatorcontrib><creatorcontrib>Tang, Jianing</creatorcontrib><creatorcontrib>Liu, Zhihao</creatorcontrib><title>The optimal search on graph by continuous-time quantum walks</title><title>arXiv.org</title><description>Chakraborty and Leonardo have shown that a spatial search by quantum walk is optimal for almost all graphs. However, we observed that on some graphs, certain states cannot be searched optimally. We present a method for constructing an optimal graph that searches an arbitrary state and provides the optimal condition. We also analyze the monotonicity of the search performance and conclude that the search performance can be improved by adding edges.</description><subject>Graphs</subject><subject>Optimization</subject><subject>Searching</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNytEKgjAUgOERBEn5Dge6FuaWLqG7KHoA7-Ukq2m66c5G9PZ50QN09V_834olQso8Ox6E2LCUqOeci1KJopAJO9VGg5tCN-IApNG3BpyFp8fJwP0DrbOhs9FFyhajYY5oQxzhjcOLdmz9wIF0-uuW7a-X-nzLJu_mqCk0vYveLqsRXOWVqgpZyv_UF05UN9o</recordid><startdate>20180409</startdate><enddate>20180409</enddate><creator>Li, Xi</creator><creator>Chen, Hanwu</creator><creator>Ruan, Yue</creator><creator>Xu, Mengke</creator><creator>Tang, Jianing</creator><creator>Liu, Zhihao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180409</creationdate><title>The optimal search on graph by continuous-time quantum walks</title><author>Li, Xi ; Chen, Hanwu ; Ruan, Yue ; Xu, Mengke ; Tang, Jianing ; Liu, Zhihao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20719795363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Graphs</topic><topic>Optimization</topic><topic>Searching</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Xi</creatorcontrib><creatorcontrib>Chen, Hanwu</creatorcontrib><creatorcontrib>Ruan, Yue</creatorcontrib><creatorcontrib>Xu, Mengke</creatorcontrib><creatorcontrib>Tang, Jianing</creatorcontrib><creatorcontrib>Liu, Zhihao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xi</au><au>Chen, Hanwu</au><au>Ruan, Yue</au><au>Xu, Mengke</au><au>Tang, Jianing</au><au>Liu, Zhihao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The optimal search on graph by continuous-time quantum walks</atitle><jtitle>arXiv.org</jtitle><date>2018-04-09</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Chakraborty and Leonardo have shown that a spatial search by quantum walk is optimal for almost all graphs. However, we observed that on some graphs, certain states cannot be searched optimally. We present a method for constructing an optimal graph that searches an arbitrary state and provides the optimal condition. We also analyze the monotonicity of the search performance and conclude that the search performance can be improved by adding edges.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071979536 |
source | ProQuest - Publicly Available Content Database |
subjects | Graphs Optimization Searching |
title | The optimal search on graph by continuous-time quantum walks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20optimal%20search%20on%20graph%20by%20continuous-time%20quantum%20walks&rft.jtitle=arXiv.org&rft.au=Li,%20Xi&rft.date=2018-04-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071979536%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20719795363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071979536&rft_id=info:pmid/&rfr_iscdi=true |