Loading…

Model identification for ARMA time series through convolutional neural networks

In this paper, we use convolutional neural networks to address the problem of model identification for autoregressive moving average time series models. We compare the performance of several neural network architectures, trained on simulated time series, with likelihood based methods, in particular...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-07
Main Authors: Wai Hoh Tang, Röllin, Adrian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wai Hoh Tang
Röllin, Adrian
description In this paper, we use convolutional neural networks to address the problem of model identification for autoregressive moving average time series models. We compare the performance of several neural network architectures, trained on simulated time series, with likelihood based methods, in particular the Akaike and Bayesian information criteria. We find that our neural networks can significantly outperform these likelihood based methods in terms of accuracy and, by orders of magnitude, in terms of speed.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071994157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071994157</sourcerecordid><originalsourceid>FETCH-proquest_journals_20719941573</originalsourceid><addsrcrecordid>eNqNy80KgkAUQOEhCJLyHS60FsZRM5cSRRsJor2Ijjk2za25M_X6_dADtDqb70xYIJIkjtapEDMWEo2cc7HKRZYlATtU2EkNqpPGqV61jVNooEcL5bEqwamrBJJWSQI3WPTnAVo0D9T-AxsNRnr7jXuivdCCTftGkwx_nbPlbnva7KObxbuX5OoRvX2PVAuex0WRxlme_KdeVnU_PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071994157</pqid></control><display><type>article</type><title>Model identification for ARMA time series through convolutional neural networks</title><source>Publicly Available Content (ProQuest)</source><creator>Wai Hoh Tang ; Röllin, Adrian</creator><creatorcontrib>Wai Hoh Tang ; Röllin, Adrian</creatorcontrib><description>In this paper, we use convolutional neural networks to address the problem of model identification for autoregressive moving average time series models. We compare the performance of several neural network architectures, trained on simulated time series, with likelihood based methods, in particular the Akaike and Bayesian information criteria. We find that our neural networks can significantly outperform these likelihood based methods in terms of accuracy and, by orders of magnitude, in terms of speed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Autoregressive models ; Autoregressive moving average ; Autoregressive moving-average models ; Bayesian analysis ; Computer simulation ; Neural networks ; Time series</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071994157?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Wai Hoh Tang</creatorcontrib><creatorcontrib>Röllin, Adrian</creatorcontrib><title>Model identification for ARMA time series through convolutional neural networks</title><title>arXiv.org</title><description>In this paper, we use convolutional neural networks to address the problem of model identification for autoregressive moving average time series models. We compare the performance of several neural network architectures, trained on simulated time series, with likelihood based methods, in particular the Akaike and Bayesian information criteria. We find that our neural networks can significantly outperform these likelihood based methods in terms of accuracy and, by orders of magnitude, in terms of speed.</description><subject>Artificial neural networks</subject><subject>Autoregressive models</subject><subject>Autoregressive moving average</subject><subject>Autoregressive moving-average models</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Neural networks</subject><subject>Time series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy80KgkAUQOEhCJLyHS60FsZRM5cSRRsJor2Ijjk2za25M_X6_dADtDqb70xYIJIkjtapEDMWEo2cc7HKRZYlATtU2EkNqpPGqV61jVNooEcL5bEqwamrBJJWSQI3WPTnAVo0D9T-AxsNRnr7jXuivdCCTftGkwx_nbPlbnva7KObxbuX5OoRvX2PVAuex0WRxlme_KdeVnU_PQ</recordid><startdate>20200719</startdate><enddate>20200719</enddate><creator>Wai Hoh Tang</creator><creator>Röllin, Adrian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200719</creationdate><title>Model identification for ARMA time series through convolutional neural networks</title><author>Wai Hoh Tang ; Röllin, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20719941573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Autoregressive models</topic><topic>Autoregressive moving average</topic><topic>Autoregressive moving-average models</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Neural networks</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Wai Hoh Tang</creatorcontrib><creatorcontrib>Röllin, Adrian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wai Hoh Tang</au><au>Röllin, Adrian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Model identification for ARMA time series through convolutional neural networks</atitle><jtitle>arXiv.org</jtitle><date>2020-07-19</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, we use convolutional neural networks to address the problem of model identification for autoregressive moving average time series models. We compare the performance of several neural network architectures, trained on simulated time series, with likelihood based methods, in particular the Akaike and Bayesian information criteria. We find that our neural networks can significantly outperform these likelihood based methods in terms of accuracy and, by orders of magnitude, in terms of speed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071994157
source Publicly Available Content (ProQuest)
subjects Artificial neural networks
Autoregressive models
Autoregressive moving average
Autoregressive moving-average models
Bayesian analysis
Computer simulation
Neural networks
Time series
title Model identification for ARMA time series through convolutional neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Model%20identification%20for%20ARMA%20time%20series%20through%20convolutional%20neural%20networks&rft.jtitle=arXiv.org&rft.au=Wai%20Hoh%20Tang&rft.date=2020-07-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071994157%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20719941573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071994157&rft_id=info:pmid/&rfr_iscdi=true