Loading…
Model identification for ARMA time series through convolutional neural networks
In this paper, we use convolutional neural networks to address the problem of model identification for autoregressive moving average time series models. We compare the performance of several neural network architectures, trained on simulated time series, with likelihood based methods, in particular...
Saved in:
Published in: | arXiv.org 2020-07 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wai Hoh Tang Röllin, Adrian |
description | In this paper, we use convolutional neural networks to address the problem of model identification for autoregressive moving average time series models. We compare the performance of several neural network architectures, trained on simulated time series, with likelihood based methods, in particular the Akaike and Bayesian information criteria. We find that our neural networks can significantly outperform these likelihood based methods in terms of accuracy and, by orders of magnitude, in terms of speed. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071994157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071994157</sourcerecordid><originalsourceid>FETCH-proquest_journals_20719941573</originalsourceid><addsrcrecordid>eNqNy80KgkAUQOEhCJLyHS60FsZRM5cSRRsJor2Ijjk2za25M_X6_dADtDqb70xYIJIkjtapEDMWEo2cc7HKRZYlATtU2EkNqpPGqV61jVNooEcL5bEqwamrBJJWSQI3WPTnAVo0D9T-AxsNRnr7jXuivdCCTftGkwx_nbPlbnva7KObxbuX5OoRvX2PVAuex0WRxlme_KdeVnU_PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071994157</pqid></control><display><type>article</type><title>Model identification for ARMA time series through convolutional neural networks</title><source>Publicly Available Content (ProQuest)</source><creator>Wai Hoh Tang ; Röllin, Adrian</creator><creatorcontrib>Wai Hoh Tang ; Röllin, Adrian</creatorcontrib><description>In this paper, we use convolutional neural networks to address the problem of model identification for autoregressive moving average time series models. We compare the performance of several neural network architectures, trained on simulated time series, with likelihood based methods, in particular the Akaike and Bayesian information criteria. We find that our neural networks can significantly outperform these likelihood based methods in terms of accuracy and, by orders of magnitude, in terms of speed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Autoregressive models ; Autoregressive moving average ; Autoregressive moving-average models ; Bayesian analysis ; Computer simulation ; Neural networks ; Time series</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071994157?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Wai Hoh Tang</creatorcontrib><creatorcontrib>Röllin, Adrian</creatorcontrib><title>Model identification for ARMA time series through convolutional neural networks</title><title>arXiv.org</title><description>In this paper, we use convolutional neural networks to address the problem of model identification for autoregressive moving average time series models. We compare the performance of several neural network architectures, trained on simulated time series, with likelihood based methods, in particular the Akaike and Bayesian information criteria. We find that our neural networks can significantly outperform these likelihood based methods in terms of accuracy and, by orders of magnitude, in terms of speed.</description><subject>Artificial neural networks</subject><subject>Autoregressive models</subject><subject>Autoregressive moving average</subject><subject>Autoregressive moving-average models</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Neural networks</subject><subject>Time series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy80KgkAUQOEhCJLyHS60FsZRM5cSRRsJor2Ijjk2za25M_X6_dADtDqb70xYIJIkjtapEDMWEo2cc7HKRZYlATtU2EkNqpPGqV61jVNooEcL5bEqwamrBJJWSQI3WPTnAVo0D9T-AxsNRnr7jXuivdCCTftGkwx_nbPlbnva7KObxbuX5OoRvX2PVAuex0WRxlme_KdeVnU_PQ</recordid><startdate>20200719</startdate><enddate>20200719</enddate><creator>Wai Hoh Tang</creator><creator>Röllin, Adrian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200719</creationdate><title>Model identification for ARMA time series through convolutional neural networks</title><author>Wai Hoh Tang ; Röllin, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20719941573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Autoregressive models</topic><topic>Autoregressive moving average</topic><topic>Autoregressive moving-average models</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Neural networks</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Wai Hoh Tang</creatorcontrib><creatorcontrib>Röllin, Adrian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wai Hoh Tang</au><au>Röllin, Adrian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Model identification for ARMA time series through convolutional neural networks</atitle><jtitle>arXiv.org</jtitle><date>2020-07-19</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, we use convolutional neural networks to address the problem of model identification for autoregressive moving average time series models. We compare the performance of several neural network architectures, trained on simulated time series, with likelihood based methods, in particular the Akaike and Bayesian information criteria. We find that our neural networks can significantly outperform these likelihood based methods in terms of accuracy and, by orders of magnitude, in terms of speed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071994157 |
source | Publicly Available Content (ProQuest) |
subjects | Artificial neural networks Autoregressive models Autoregressive moving average Autoregressive moving-average models Bayesian analysis Computer simulation Neural networks Time series |
title | Model identification for ARMA time series through convolutional neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Model%20identification%20for%20ARMA%20time%20series%20through%20convolutional%20neural%20networks&rft.jtitle=arXiv.org&rft.au=Wai%20Hoh%20Tang&rft.date=2020-07-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071994157%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20719941573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071994157&rft_id=info:pmid/&rfr_iscdi=true |