Loading…

QCD at finite isospin chemical potential

We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transiti...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-09
Main Authors: Brandt, Bastian B, Endrodi, Gergely, Schmalzbauer, Sebastian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Brandt, Bastian B
Endrodi, Gergely
Schmalzbauer, Sebastian
description We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.
doi_str_mv 10.48550/arxiv.1709.10487
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2072010973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072010973</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-b1122044aecd6a1f639cff55ff71a48f465c305262ad01cfa16d0f34097e26b3</originalsourceid><addsrcrecordid>eNotjctKw0AUQAdBsNR-QHcDbtwk3nvnlSwlPioUROy-3E5mcEpMYiYVP9-Crs7mcI4Qa4RSV8bAHU8_6btEB3WJoCt3IRakFBaVJroSq5yPAEDWkTFqIW7fmgfJs4ypT3OQKQ95TL30H-Ezee7kOMyhnxN31-IycpfD6p9L8f70uGs2xfb1-aW53xZsSBUHRCLQmoNvLWO0qvYxGhOjQ9ZV1NZ4BYYscQvoI6NtISoNtQtkD2opbv6q4zR8nUKe98fhNPXn4Z7AEeBZVOoXB6VBBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072010973</pqid></control><display><type>article</type><title>QCD at finite isospin chemical potential</title><source>Publicly Available Content (ProQuest)</source><creator>Brandt, Bastian B ; Endrodi, Gergely ; Schmalzbauer, Sebastian</creator><creatorcontrib>Brandt, Bastian B ; Endrodi, Gergely ; Schmalzbauer, Sebastian</creatorcontrib><description>We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1709.10487</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chemical potential ; Computer simulation ; Equations of state ; Fermions ; Flavor (particle physics) ; Monte Carlo simulation ; Organic chemistry ; Phase diagrams ; Phase transitions ; Pions ; Taylor series</subject><ispartof>arXiv.org, 2017-09</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2072010973?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Brandt, Bastian B</creatorcontrib><creatorcontrib>Endrodi, Gergely</creatorcontrib><creatorcontrib>Schmalzbauer, Sebastian</creatorcontrib><title>QCD at finite isospin chemical potential</title><title>arXiv.org</title><description>We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.</description><subject>Chemical potential</subject><subject>Computer simulation</subject><subject>Equations of state</subject><subject>Fermions</subject><subject>Flavor (particle physics)</subject><subject>Monte Carlo simulation</subject><subject>Organic chemistry</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>Pions</subject><subject>Taylor series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKw0AUQAdBsNR-QHcDbtwk3nvnlSwlPioUROy-3E5mcEpMYiYVP9-Crs7mcI4Qa4RSV8bAHU8_6btEB3WJoCt3IRakFBaVJroSq5yPAEDWkTFqIW7fmgfJs4ypT3OQKQ95TL30H-Ezee7kOMyhnxN31-IycpfD6p9L8f70uGs2xfb1-aW53xZsSBUHRCLQmoNvLWO0qvYxGhOjQ9ZV1NZ4BYYscQvoI6NtISoNtQtkD2opbv6q4zR8nUKe98fhNPXn4Z7AEeBZVOoXB6VBBA</recordid><startdate>20170929</startdate><enddate>20170929</enddate><creator>Brandt, Bastian B</creator><creator>Endrodi, Gergely</creator><creator>Schmalzbauer, Sebastian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20170929</creationdate><title>QCD at finite isospin chemical potential</title><author>Brandt, Bastian B ; Endrodi, Gergely ; Schmalzbauer, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-b1122044aecd6a1f639cff55ff71a48f465c305262ad01cfa16d0f34097e26b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical potential</topic><topic>Computer simulation</topic><topic>Equations of state</topic><topic>Fermions</topic><topic>Flavor (particle physics)</topic><topic>Monte Carlo simulation</topic><topic>Organic chemistry</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>Pions</topic><topic>Taylor series</topic><toplevel>online_resources</toplevel><creatorcontrib>Brandt, Bastian B</creatorcontrib><creatorcontrib>Endrodi, Gergely</creatorcontrib><creatorcontrib>Schmalzbauer, Sebastian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandt, Bastian B</au><au>Endrodi, Gergely</au><au>Schmalzbauer, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QCD at finite isospin chemical potential</atitle><jtitle>arXiv.org</jtitle><date>2017-09-29</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1709.10487</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2072010973
source Publicly Available Content (ProQuest)
subjects Chemical potential
Computer simulation
Equations of state
Fermions
Flavor (particle physics)
Monte Carlo simulation
Organic chemistry
Phase diagrams
Phase transitions
Pions
Taylor series
title QCD at finite isospin chemical potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QCD%20at%20finite%20isospin%20chemical%20potential&rft.jtitle=arXiv.org&rft.au=Brandt,%20Bastian%20B&rft.date=2017-09-29&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1709.10487&rft_dat=%3Cproquest%3E2072010973%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-b1122044aecd6a1f639cff55ff71a48f465c305262ad01cfa16d0f34097e26b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2072010973&rft_id=info:pmid/&rfr_iscdi=true