Loading…
Prospects for detecting gravitational waves at 5 Hz with ground-based detectors
We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with techno...
Saved in:
Published in: | arXiv.org 2018-04 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yu, Hang Martynov, Denis Vitale, Salvatore Evans, Matthew Barr, Bryan Carbone, Ludovico Dooley, Katherine L Freise, Andreas Fulda, Paul Grote, Hartmut Hammond, Giles Hild, Stefan Hough, James Huttner, Sabina Mow-Lowry, Conor Rowan, Sheila Shoemaker, David Sigg, Daniel Sorazu, Borja |
description | We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z~6 and would be sensitive to intermediate-mass black holes up to 2000 M_\odot. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz, and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r-modes and the gravitational memory effects. |
doi_str_mv | 10.48550/arxiv.1712.05417 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2072085424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072085424</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-f38ce0c6af9e7999023bf856d13b9da648604363ded39f48818bd2602f4c0e5b3</originalsourceid><addsrcrecordid>eNotjk1LAzEURYMgWGp_gLuA66kvLx-TLKWoFQrtovuSmSR1SpnUJDMVf70DdnXv4tzDJeSJwVJoKeHFpp9uXLKa4RKkYPUdmSHnrNIC8YEscj4BAKoapeQzst2lmC--LZmGmKjzZepdf6THZMeu2NLF3p7p1Y4-U1uopOtfeu3K1wTEoXdVY7N3t11M-ZHcB3vOfnHLOdm_v-1X62qz_fhcvW4qK1FUgevWQ6tsML42xgDyJmipHOONcVYJrUBwxZ133AShNdONQwUYRAteNnxOnv-1lxS_B5_L4RSHND3NB4QaQUuBgv8B2cBQMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072085424</pqid></control><display><type>article</type><title>Prospects for detecting gravitational waves at 5 Hz with ground-based detectors</title><source>Publicly Available Content Database</source><creator>Yu, Hang ; Martynov, Denis ; Vitale, Salvatore ; Evans, Matthew ; Barr, Bryan ; Carbone, Ludovico ; Dooley, Katherine L ; Freise, Andreas ; Fulda, Paul ; Grote, Hartmut ; Hammond, Giles ; Hild, Stefan ; Hough, James ; Huttner, Sabina ; Mow-Lowry, Conor ; Rowan, Sheila ; Shoemaker, David ; Sigg, Daniel ; Sorazu, Borja</creator><creatorcontrib>Yu, Hang ; Martynov, Denis ; Vitale, Salvatore ; Evans, Matthew ; Barr, Bryan ; Carbone, Ludovico ; Dooley, Katherine L ; Freise, Andreas ; Fulda, Paul ; Grote, Hartmut ; Hammond, Giles ; Hild, Stefan ; Hough, James ; Huttner, Sabina ; Mow-Lowry, Conor ; Rowan, Sheila ; Shoemaker, David ; Sigg, Daniel ; Sorazu, Borja</creatorcontrib><description>We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z~6 and would be sensitive to intermediate-mass black holes up to 2000 M_\odot. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz, and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r-modes and the gravitational memory effects.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1712.05417</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Binary stars ; Black holes ; Coalescing ; Detectors ; Gravitational effects ; Gravitational waves ; Low frequencies ; Neutron stars ; Neutrons ; Red shift ; Seismographs</subject><ispartof>arXiv.org, 2018-04</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2072085424?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Yu, Hang</creatorcontrib><creatorcontrib>Martynov, Denis</creatorcontrib><creatorcontrib>Vitale, Salvatore</creatorcontrib><creatorcontrib>Evans, Matthew</creatorcontrib><creatorcontrib>Barr, Bryan</creatorcontrib><creatorcontrib>Carbone, Ludovico</creatorcontrib><creatorcontrib>Dooley, Katherine L</creatorcontrib><creatorcontrib>Freise, Andreas</creatorcontrib><creatorcontrib>Fulda, Paul</creatorcontrib><creatorcontrib>Grote, Hartmut</creatorcontrib><creatorcontrib>Hammond, Giles</creatorcontrib><creatorcontrib>Hild, Stefan</creatorcontrib><creatorcontrib>Hough, James</creatorcontrib><creatorcontrib>Huttner, Sabina</creatorcontrib><creatorcontrib>Mow-Lowry, Conor</creatorcontrib><creatorcontrib>Rowan, Sheila</creatorcontrib><creatorcontrib>Shoemaker, David</creatorcontrib><creatorcontrib>Sigg, Daniel</creatorcontrib><creatorcontrib>Sorazu, Borja</creatorcontrib><title>Prospects for detecting gravitational waves at 5 Hz with ground-based detectors</title><title>arXiv.org</title><description>We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z~6 and would be sensitive to intermediate-mass black holes up to 2000 M_\odot. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz, and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r-modes and the gravitational memory effects.</description><subject>Binary stars</subject><subject>Black holes</subject><subject>Coalescing</subject><subject>Detectors</subject><subject>Gravitational effects</subject><subject>Gravitational waves</subject><subject>Low frequencies</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Red shift</subject><subject>Seismographs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1LAzEURYMgWGp_gLuA66kvLx-TLKWoFQrtovuSmSR1SpnUJDMVf70DdnXv4tzDJeSJwVJoKeHFpp9uXLKa4RKkYPUdmSHnrNIC8YEscj4BAKoapeQzst2lmC--LZmGmKjzZepdf6THZMeu2NLF3p7p1Y4-U1uopOtfeu3K1wTEoXdVY7N3t11M-ZHcB3vOfnHLOdm_v-1X62qz_fhcvW4qK1FUgevWQ6tsML42xgDyJmipHOONcVYJrUBwxZ133AShNdONQwUYRAteNnxOnv-1lxS_B5_L4RSHND3NB4QaQUuBgv8B2cBQMg</recordid><startdate>20180423</startdate><enddate>20180423</enddate><creator>Yu, Hang</creator><creator>Martynov, Denis</creator><creator>Vitale, Salvatore</creator><creator>Evans, Matthew</creator><creator>Barr, Bryan</creator><creator>Carbone, Ludovico</creator><creator>Dooley, Katherine L</creator><creator>Freise, Andreas</creator><creator>Fulda, Paul</creator><creator>Grote, Hartmut</creator><creator>Hammond, Giles</creator><creator>Hild, Stefan</creator><creator>Hough, James</creator><creator>Huttner, Sabina</creator><creator>Mow-Lowry, Conor</creator><creator>Rowan, Sheila</creator><creator>Shoemaker, David</creator><creator>Sigg, Daniel</creator><creator>Sorazu, Borja</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180423</creationdate><title>Prospects for detecting gravitational waves at 5 Hz with ground-based detectors</title><author>Yu, Hang ; Martynov, Denis ; Vitale, Salvatore ; Evans, Matthew ; Barr, Bryan ; Carbone, Ludovico ; Dooley, Katherine L ; Freise, Andreas ; Fulda, Paul ; Grote, Hartmut ; Hammond, Giles ; Hild, Stefan ; Hough, James ; Huttner, Sabina ; Mow-Lowry, Conor ; Rowan, Sheila ; Shoemaker, David ; Sigg, Daniel ; Sorazu, Borja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-f38ce0c6af9e7999023bf856d13b9da648604363ded39f48818bd2602f4c0e5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Binary stars</topic><topic>Black holes</topic><topic>Coalescing</topic><topic>Detectors</topic><topic>Gravitational effects</topic><topic>Gravitational waves</topic><topic>Low frequencies</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Red shift</topic><topic>Seismographs</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Hang</creatorcontrib><creatorcontrib>Martynov, Denis</creatorcontrib><creatorcontrib>Vitale, Salvatore</creatorcontrib><creatorcontrib>Evans, Matthew</creatorcontrib><creatorcontrib>Barr, Bryan</creatorcontrib><creatorcontrib>Carbone, Ludovico</creatorcontrib><creatorcontrib>Dooley, Katherine L</creatorcontrib><creatorcontrib>Freise, Andreas</creatorcontrib><creatorcontrib>Fulda, Paul</creatorcontrib><creatorcontrib>Grote, Hartmut</creatorcontrib><creatorcontrib>Hammond, Giles</creatorcontrib><creatorcontrib>Hild, Stefan</creatorcontrib><creatorcontrib>Hough, James</creatorcontrib><creatorcontrib>Huttner, Sabina</creatorcontrib><creatorcontrib>Mow-Lowry, Conor</creatorcontrib><creatorcontrib>Rowan, Sheila</creatorcontrib><creatorcontrib>Shoemaker, David</creatorcontrib><creatorcontrib>Sigg, Daniel</creatorcontrib><creatorcontrib>Sorazu, Borja</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Hang</au><au>Martynov, Denis</au><au>Vitale, Salvatore</au><au>Evans, Matthew</au><au>Barr, Bryan</au><au>Carbone, Ludovico</au><au>Dooley, Katherine L</au><au>Freise, Andreas</au><au>Fulda, Paul</au><au>Grote, Hartmut</au><au>Hammond, Giles</au><au>Hild, Stefan</au><au>Hough, James</au><au>Huttner, Sabina</au><au>Mow-Lowry, Conor</au><au>Rowan, Sheila</au><au>Shoemaker, David</au><au>Sigg, Daniel</au><au>Sorazu, Borja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prospects for detecting gravitational waves at 5 Hz with ground-based detectors</atitle><jtitle>arXiv.org</jtitle><date>2018-04-23</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z~6 and would be sensitive to intermediate-mass black holes up to 2000 M_\odot. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz, and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r-modes and the gravitational memory effects.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1712.05417</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2072085424 |
source | Publicly Available Content Database |
subjects | Binary stars Black holes Coalescing Detectors Gravitational effects Gravitational waves Low frequencies Neutron stars Neutrons Red shift Seismographs |
title | Prospects for detecting gravitational waves at 5 Hz with ground-based detectors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prospects%20for%20detecting%20gravitational%20waves%20at%205%20Hz%20with%20ground-based%20detectors&rft.jtitle=arXiv.org&rft.au=Yu,%20Hang&rft.date=2018-04-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1712.05417&rft_dat=%3Cproquest%3E2072085424%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-f38ce0c6af9e7999023bf856d13b9da648604363ded39f48818bd2602f4c0e5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2072085424&rft_id=info:pmid/&rfr_iscdi=true |