Loading…

Prospects for detecting gravitational waves at 5 Hz with ground-based detectors

We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with techno...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-04
Main Authors: Yu, Hang, Martynov, Denis, Vitale, Salvatore, Evans, Matthew, Barr, Bryan, Carbone, Ludovico, Dooley, Katherine L, Freise, Andreas, Fulda, Paul, Grote, Hartmut, Hammond, Giles, Hild, Stefan, Hough, James, Huttner, Sabina, Mow-Lowry, Conor, Rowan, Sheila, Shoemaker, David, Sigg, Daniel, Sorazu, Borja
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yu, Hang
Martynov, Denis
Vitale, Salvatore
Evans, Matthew
Barr, Bryan
Carbone, Ludovico
Dooley, Katherine L
Freise, Andreas
Fulda, Paul
Grote, Hartmut
Hammond, Giles
Hild, Stefan
Hough, James
Huttner, Sabina
Mow-Lowry, Conor
Rowan, Sheila
Shoemaker, David
Sigg, Daniel
Sorazu, Borja
description We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z~6 and would be sensitive to intermediate-mass black holes up to 2000 M_\odot. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz, and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r-modes and the gravitational memory effects.
doi_str_mv 10.48550/arxiv.1712.05417
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2072085424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072085424</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-f38ce0c6af9e7999023bf856d13b9da648604363ded39f48818bd2602f4c0e5b3</originalsourceid><addsrcrecordid>eNotjk1LAzEURYMgWGp_gLuA66kvLx-TLKWoFQrtovuSmSR1SpnUJDMVf70DdnXv4tzDJeSJwVJoKeHFpp9uXLKa4RKkYPUdmSHnrNIC8YEscj4BAKoapeQzst2lmC--LZmGmKjzZepdf6THZMeu2NLF3p7p1Y4-U1uopOtfeu3K1wTEoXdVY7N3t11M-ZHcB3vOfnHLOdm_v-1X62qz_fhcvW4qK1FUgevWQ6tsML42xgDyJmipHOONcVYJrUBwxZ133AShNdONQwUYRAteNnxOnv-1lxS_B5_L4RSHND3NB4QaQUuBgv8B2cBQMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072085424</pqid></control><display><type>article</type><title>Prospects for detecting gravitational waves at 5 Hz with ground-based detectors</title><source>Publicly Available Content Database</source><creator>Yu, Hang ; Martynov, Denis ; Vitale, Salvatore ; Evans, Matthew ; Barr, Bryan ; Carbone, Ludovico ; Dooley, Katherine L ; Freise, Andreas ; Fulda, Paul ; Grote, Hartmut ; Hammond, Giles ; Hild, Stefan ; Hough, James ; Huttner, Sabina ; Mow-Lowry, Conor ; Rowan, Sheila ; Shoemaker, David ; Sigg, Daniel ; Sorazu, Borja</creator><creatorcontrib>Yu, Hang ; Martynov, Denis ; Vitale, Salvatore ; Evans, Matthew ; Barr, Bryan ; Carbone, Ludovico ; Dooley, Katherine L ; Freise, Andreas ; Fulda, Paul ; Grote, Hartmut ; Hammond, Giles ; Hild, Stefan ; Hough, James ; Huttner, Sabina ; Mow-Lowry, Conor ; Rowan, Sheila ; Shoemaker, David ; Sigg, Daniel ; Sorazu, Borja</creatorcontrib><description>We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z~6 and would be sensitive to intermediate-mass black holes up to 2000 M_\odot. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz, and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r-modes and the gravitational memory effects.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1712.05417</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Binary stars ; Black holes ; Coalescing ; Detectors ; Gravitational effects ; Gravitational waves ; Low frequencies ; Neutron stars ; Neutrons ; Red shift ; Seismographs</subject><ispartof>arXiv.org, 2018-04</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2072085424?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Yu, Hang</creatorcontrib><creatorcontrib>Martynov, Denis</creatorcontrib><creatorcontrib>Vitale, Salvatore</creatorcontrib><creatorcontrib>Evans, Matthew</creatorcontrib><creatorcontrib>Barr, Bryan</creatorcontrib><creatorcontrib>Carbone, Ludovico</creatorcontrib><creatorcontrib>Dooley, Katherine L</creatorcontrib><creatorcontrib>Freise, Andreas</creatorcontrib><creatorcontrib>Fulda, Paul</creatorcontrib><creatorcontrib>Grote, Hartmut</creatorcontrib><creatorcontrib>Hammond, Giles</creatorcontrib><creatorcontrib>Hild, Stefan</creatorcontrib><creatorcontrib>Hough, James</creatorcontrib><creatorcontrib>Huttner, Sabina</creatorcontrib><creatorcontrib>Mow-Lowry, Conor</creatorcontrib><creatorcontrib>Rowan, Sheila</creatorcontrib><creatorcontrib>Shoemaker, David</creatorcontrib><creatorcontrib>Sigg, Daniel</creatorcontrib><creatorcontrib>Sorazu, Borja</creatorcontrib><title>Prospects for detecting gravitational waves at 5 Hz with ground-based detectors</title><title>arXiv.org</title><description>We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z~6 and would be sensitive to intermediate-mass black holes up to 2000 M_\odot. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz, and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r-modes and the gravitational memory effects.</description><subject>Binary stars</subject><subject>Black holes</subject><subject>Coalescing</subject><subject>Detectors</subject><subject>Gravitational effects</subject><subject>Gravitational waves</subject><subject>Low frequencies</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Red shift</subject><subject>Seismographs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1LAzEURYMgWGp_gLuA66kvLx-TLKWoFQrtovuSmSR1SpnUJDMVf70DdnXv4tzDJeSJwVJoKeHFpp9uXLKa4RKkYPUdmSHnrNIC8YEscj4BAKoapeQzst2lmC--LZmGmKjzZepdf6THZMeu2NLF3p7p1Y4-U1uopOtfeu3K1wTEoXdVY7N3t11M-ZHcB3vOfnHLOdm_v-1X62qz_fhcvW4qK1FUgevWQ6tsML42xgDyJmipHOONcVYJrUBwxZ133AShNdONQwUYRAteNnxOnv-1lxS_B5_L4RSHND3NB4QaQUuBgv8B2cBQMg</recordid><startdate>20180423</startdate><enddate>20180423</enddate><creator>Yu, Hang</creator><creator>Martynov, Denis</creator><creator>Vitale, Salvatore</creator><creator>Evans, Matthew</creator><creator>Barr, Bryan</creator><creator>Carbone, Ludovico</creator><creator>Dooley, Katherine L</creator><creator>Freise, Andreas</creator><creator>Fulda, Paul</creator><creator>Grote, Hartmut</creator><creator>Hammond, Giles</creator><creator>Hild, Stefan</creator><creator>Hough, James</creator><creator>Huttner, Sabina</creator><creator>Mow-Lowry, Conor</creator><creator>Rowan, Sheila</creator><creator>Shoemaker, David</creator><creator>Sigg, Daniel</creator><creator>Sorazu, Borja</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180423</creationdate><title>Prospects for detecting gravitational waves at 5 Hz with ground-based detectors</title><author>Yu, Hang ; Martynov, Denis ; Vitale, Salvatore ; Evans, Matthew ; Barr, Bryan ; Carbone, Ludovico ; Dooley, Katherine L ; Freise, Andreas ; Fulda, Paul ; Grote, Hartmut ; Hammond, Giles ; Hild, Stefan ; Hough, James ; Huttner, Sabina ; Mow-Lowry, Conor ; Rowan, Sheila ; Shoemaker, David ; Sigg, Daniel ; Sorazu, Borja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-f38ce0c6af9e7999023bf856d13b9da648604363ded39f48818bd2602f4c0e5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Binary stars</topic><topic>Black holes</topic><topic>Coalescing</topic><topic>Detectors</topic><topic>Gravitational effects</topic><topic>Gravitational waves</topic><topic>Low frequencies</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Red shift</topic><topic>Seismographs</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Hang</creatorcontrib><creatorcontrib>Martynov, Denis</creatorcontrib><creatorcontrib>Vitale, Salvatore</creatorcontrib><creatorcontrib>Evans, Matthew</creatorcontrib><creatorcontrib>Barr, Bryan</creatorcontrib><creatorcontrib>Carbone, Ludovico</creatorcontrib><creatorcontrib>Dooley, Katherine L</creatorcontrib><creatorcontrib>Freise, Andreas</creatorcontrib><creatorcontrib>Fulda, Paul</creatorcontrib><creatorcontrib>Grote, Hartmut</creatorcontrib><creatorcontrib>Hammond, Giles</creatorcontrib><creatorcontrib>Hild, Stefan</creatorcontrib><creatorcontrib>Hough, James</creatorcontrib><creatorcontrib>Huttner, Sabina</creatorcontrib><creatorcontrib>Mow-Lowry, Conor</creatorcontrib><creatorcontrib>Rowan, Sheila</creatorcontrib><creatorcontrib>Shoemaker, David</creatorcontrib><creatorcontrib>Sigg, Daniel</creatorcontrib><creatorcontrib>Sorazu, Borja</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Hang</au><au>Martynov, Denis</au><au>Vitale, Salvatore</au><au>Evans, Matthew</au><au>Barr, Bryan</au><au>Carbone, Ludovico</au><au>Dooley, Katherine L</au><au>Freise, Andreas</au><au>Fulda, Paul</au><au>Grote, Hartmut</au><au>Hammond, Giles</au><au>Hild, Stefan</au><au>Hough, James</au><au>Huttner, Sabina</au><au>Mow-Lowry, Conor</au><au>Rowan, Sheila</au><au>Shoemaker, David</au><au>Sigg, Daniel</au><au>Sorazu, Borja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prospects for detecting gravitational waves at 5 Hz with ground-based detectors</atitle><jtitle>arXiv.org</jtitle><date>2018-04-23</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z~6 and would be sensitive to intermediate-mass black holes up to 2000 M_\odot. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz, and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r-modes and the gravitational memory effects.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1712.05417</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2072085424
source Publicly Available Content Database
subjects Binary stars
Black holes
Coalescing
Detectors
Gravitational effects
Gravitational waves
Low frequencies
Neutron stars
Neutrons
Red shift
Seismographs
title Prospects for detecting gravitational waves at 5 Hz with ground-based detectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prospects%20for%20detecting%20gravitational%20waves%20at%205%20Hz%20with%20ground-based%20detectors&rft.jtitle=arXiv.org&rft.au=Yu,%20Hang&rft.date=2018-04-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1712.05417&rft_dat=%3Cproquest%3E2072085424%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-f38ce0c6af9e7999023bf856d13b9da648604363ded39f48818bd2602f4c0e5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2072085424&rft_id=info:pmid/&rfr_iscdi=true