Loading…
Electric-field modification of interfacial spin-orbit field-vector
Current induced spin-orbit magnetic fields (iSOFs), arising either in single-crystalline ferromagnets with broken inversion symmetry1,2 or in non-magnetic metal/ferromagnetic metal bilayers3,4, can produce spin-orbit torques which act on a ferromagnet's magnetization,thus offering an efficient...
Saved in:
Published in: | arXiv.org 2018-04 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Current induced spin-orbit magnetic fields (iSOFs), arising either in single-crystalline ferromagnets with broken inversion symmetry1,2 or in non-magnetic metal/ferromagnetic metal bilayers3,4, can produce spin-orbit torques which act on a ferromagnet's magnetization,thus offering an efficient way for its manipulation.To further reduce power consumption in spin-orbit torque devices, it is highly desirable to control iSOFs by the field-effect, where power consumption is determined by charging/discharging a capacitor5,6. In particular, efficient electric-field control of iSOFs acting on ferromagnetic metals is of vital importance for practical applications. It is known that in single crystalline Fe/GaAs (001) heterostructures with C2v symmetry, interfacial SOFs emerge at the Fe/GaAs (001) interface due to the lack of inversion symmetry7,8. Here, we show that by applying a gate-voltage across the Fe/GaAs interface, interfacial SOFs acting on Fe can be robustly modulated via the change of the magnitude of the interfacial spin-orbit interaction. Our results show that, for the first time, the electric-field in a Schottky barrier is capable of modifying SOFs, which can be exploited for the development of low-power-consumption spin-orbit torque devices. |
---|---|
ISSN: | 2331-8422 |