Loading…
Titanium-hydrogen interaction at megabar pressure
The process of transport of metal particles (\(\mathit{ejecta}\)) in gases is the subject of recent works in the field of nuclear energetics. We studied the process of dissolution of titanium ejecta in warm dense hydrogen at megabar pressure. Thermodynamic and kinetic properties of the process were...
Saved in:
Published in: | arXiv.org 2018-05 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mazitov, Arslan B Oganov, Artem R Yanilkin, Alexey V |
description | The process of transport of metal particles (\(\mathit{ejecta}\)) in gases is the subject of recent works in the field of nuclear energetics. We studied the process of dissolution of titanium ejecta in warm dense hydrogen at megabar pressure. Thermodynamic and kinetic properties of the process were investigated using classical and quantum molecular dynamics methods. We estimated the dissolution time of ejecta, the saturation limit of titanium atoms with hydrogen and the heat of dissolution. It was found that particles with a radius of 1 \(\mu m\) dissolve in hydrogen in time of \(1.5 \cdot 10^{-2} \ \mu s\), while the process of mixing can be described by diffusion law. The presented approach demonstrates the final state of the titanium-hydrogen system as a homogenized fluid with completely dissolved titanium particles. This result can be generalized to all external conditions under which titanium and hydrogen are atomic fluids. |
doi_str_mv | 10.48550/arxiv.1802.08292 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2072244025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072244025</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-79a9f267d4cb335d5349b10d5aea6811b1871f8012ec12e9ae28344ea532bf883</originalsourceid><addsrcrecordid>eNotjctqwzAQAEWh0JDmA3oz9Gx3tdLG8rGEviCQi-9hba8ThUROJbu0f19DexjmNqPUg4bCOiJ44vjtvwrtAAtwWOGNWqAxOncW8U6tUjoBAK5LJDILpWs_cvDTJT_-dHE4SMh8GCVyO_ohZDxmFzlwwzG7RklpinKvbns-J1n9e6nq15d6855vd28fm-dtzoSUlxVX_XzpbNsYQx0ZWzUaOmLhtdO60a7UvQON0s5ULOiMtcJksOmdM0v1-Je9xuFzkjTuT8MUw3zcI5SI1gKS-QWoPkUx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072244025</pqid></control><display><type>article</type><title>Titanium-hydrogen interaction at megabar pressure</title><source>Publicly Available Content (ProQuest)</source><creator>Mazitov, Arslan B ; Oganov, Artem R ; Yanilkin, Alexey V</creator><creatorcontrib>Mazitov, Arslan B ; Oganov, Artem R ; Yanilkin, Alexey V</creatorcontrib><description>The process of transport of metal particles (\(\mathit{ejecta}\)) in gases is the subject of recent works in the field of nuclear energetics. We studied the process of dissolution of titanium ejecta in warm dense hydrogen at megabar pressure. Thermodynamic and kinetic properties of the process were investigated using classical and quantum molecular dynamics methods. We estimated the dissolution time of ejecta, the saturation limit of titanium atoms with hydrogen and the heat of dissolution. It was found that particles with a radius of 1 \(\mu m\) dissolve in hydrogen in time of \(1.5 \cdot 10^{-2} \ \mu s\), while the process of mixing can be described by diffusion law. The presented approach demonstrates the final state of the titanium-hydrogen system as a homogenized fluid with completely dissolved titanium particles. This result can be generalized to all external conditions under which titanium and hydrogen are atomic fluids.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1802.08292</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dissolution ; Ejecta ; Heat of solution ; Hydrogen ; Metal particles ; Molecular dynamics ; Titanium</subject><ispartof>arXiv.org, 2018-05</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2072244025?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Mazitov, Arslan B</creatorcontrib><creatorcontrib>Oganov, Artem R</creatorcontrib><creatorcontrib>Yanilkin, Alexey V</creatorcontrib><title>Titanium-hydrogen interaction at megabar pressure</title><title>arXiv.org</title><description>The process of transport of metal particles (\(\mathit{ejecta}\)) in gases is the subject of recent works in the field of nuclear energetics. We studied the process of dissolution of titanium ejecta in warm dense hydrogen at megabar pressure. Thermodynamic and kinetic properties of the process were investigated using classical and quantum molecular dynamics methods. We estimated the dissolution time of ejecta, the saturation limit of titanium atoms with hydrogen and the heat of dissolution. It was found that particles with a radius of 1 \(\mu m\) dissolve in hydrogen in time of \(1.5 \cdot 10^{-2} \ \mu s\), while the process of mixing can be described by diffusion law. The presented approach demonstrates the final state of the titanium-hydrogen system as a homogenized fluid with completely dissolved titanium particles. This result can be generalized to all external conditions under which titanium and hydrogen are atomic fluids.</description><subject>Dissolution</subject><subject>Ejecta</subject><subject>Heat of solution</subject><subject>Hydrogen</subject><subject>Metal particles</subject><subject>Molecular dynamics</subject><subject>Titanium</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctqwzAQAEWh0JDmA3oz9Gx3tdLG8rGEviCQi-9hba8ThUROJbu0f19DexjmNqPUg4bCOiJ44vjtvwrtAAtwWOGNWqAxOncW8U6tUjoBAK5LJDILpWs_cvDTJT_-dHE4SMh8GCVyO_ohZDxmFzlwwzG7RklpinKvbns-J1n9e6nq15d6855vd28fm-dtzoSUlxVX_XzpbNsYQx0ZWzUaOmLhtdO60a7UvQON0s5ULOiMtcJksOmdM0v1-Je9xuFzkjTuT8MUw3zcI5SI1gKS-QWoPkUx</recordid><startdate>20180504</startdate><enddate>20180504</enddate><creator>Mazitov, Arslan B</creator><creator>Oganov, Artem R</creator><creator>Yanilkin, Alexey V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180504</creationdate><title>Titanium-hydrogen interaction at megabar pressure</title><author>Mazitov, Arslan B ; Oganov, Artem R ; Yanilkin, Alexey V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-79a9f267d4cb335d5349b10d5aea6811b1871f8012ec12e9ae28344ea532bf883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dissolution</topic><topic>Ejecta</topic><topic>Heat of solution</topic><topic>Hydrogen</topic><topic>Metal particles</topic><topic>Molecular dynamics</topic><topic>Titanium</topic><toplevel>online_resources</toplevel><creatorcontrib>Mazitov, Arslan B</creatorcontrib><creatorcontrib>Oganov, Artem R</creatorcontrib><creatorcontrib>Yanilkin, Alexey V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazitov, Arslan B</au><au>Oganov, Artem R</au><au>Yanilkin, Alexey V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Titanium-hydrogen interaction at megabar pressure</atitle><jtitle>arXiv.org</jtitle><date>2018-05-04</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>The process of transport of metal particles (\(\mathit{ejecta}\)) in gases is the subject of recent works in the field of nuclear energetics. We studied the process of dissolution of titanium ejecta in warm dense hydrogen at megabar pressure. Thermodynamic and kinetic properties of the process were investigated using classical and quantum molecular dynamics methods. We estimated the dissolution time of ejecta, the saturation limit of titanium atoms with hydrogen and the heat of dissolution. It was found that particles with a radius of 1 \(\mu m\) dissolve in hydrogen in time of \(1.5 \cdot 10^{-2} \ \mu s\), while the process of mixing can be described by diffusion law. The presented approach demonstrates the final state of the titanium-hydrogen system as a homogenized fluid with completely dissolved titanium particles. This result can be generalized to all external conditions under which titanium and hydrogen are atomic fluids.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1802.08292</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2072244025 |
source | Publicly Available Content (ProQuest) |
subjects | Dissolution Ejecta Heat of solution Hydrogen Metal particles Molecular dynamics Titanium |
title | Titanium-hydrogen interaction at megabar pressure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Titanium-hydrogen%20interaction%20at%20megabar%20pressure&rft.jtitle=arXiv.org&rft.au=Mazitov,%20Arslan%20B&rft.date=2018-05-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1802.08292&rft_dat=%3Cproquest%3E2072244025%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-79a9f267d4cb335d5349b10d5aea6811b1871f8012ec12e9ae28344ea532bf883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2072244025&rft_id=info:pmid/&rfr_iscdi=true |