Loading…

Titanium-hydrogen interaction at megabar pressure

The process of transport of metal particles (\(\mathit{ejecta}\)) in gases is the subject of recent works in the field of nuclear energetics. We studied the process of dissolution of titanium ejecta in warm dense hydrogen at megabar pressure. Thermodynamic and kinetic properties of the process were...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-05
Main Authors: Mazitov, Arslan B, Oganov, Artem R, Yanilkin, Alexey V
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mazitov, Arslan B
Oganov, Artem R
Yanilkin, Alexey V
description The process of transport of metal particles (\(\mathit{ejecta}\)) in gases is the subject of recent works in the field of nuclear energetics. We studied the process of dissolution of titanium ejecta in warm dense hydrogen at megabar pressure. Thermodynamic and kinetic properties of the process were investigated using classical and quantum molecular dynamics methods. We estimated the dissolution time of ejecta, the saturation limit of titanium atoms with hydrogen and the heat of dissolution. It was found that particles with a radius of 1 \(\mu m\) dissolve in hydrogen in time of \(1.5 \cdot 10^{-2} \ \mu s\), while the process of mixing can be described by diffusion law. The presented approach demonstrates the final state of the titanium-hydrogen system as a homogenized fluid with completely dissolved titanium particles. This result can be generalized to all external conditions under which titanium and hydrogen are atomic fluids.
doi_str_mv 10.48550/arxiv.1802.08292
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2072244025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072244025</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-79a9f267d4cb335d5349b10d5aea6811b1871f8012ec12e9ae28344ea532bf883</originalsourceid><addsrcrecordid>eNotjctqwzAQAEWh0JDmA3oz9Gx3tdLG8rGEviCQi-9hba8ThUROJbu0f19DexjmNqPUg4bCOiJ44vjtvwrtAAtwWOGNWqAxOncW8U6tUjoBAK5LJDILpWs_cvDTJT_-dHE4SMh8GCVyO_ohZDxmFzlwwzG7RklpinKvbns-J1n9e6nq15d6855vd28fm-dtzoSUlxVX_XzpbNsYQx0ZWzUaOmLhtdO60a7UvQON0s5ULOiMtcJksOmdM0v1-Je9xuFzkjTuT8MUw3zcI5SI1gKS-QWoPkUx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072244025</pqid></control><display><type>article</type><title>Titanium-hydrogen interaction at megabar pressure</title><source>Publicly Available Content (ProQuest)</source><creator>Mazitov, Arslan B ; Oganov, Artem R ; Yanilkin, Alexey V</creator><creatorcontrib>Mazitov, Arslan B ; Oganov, Artem R ; Yanilkin, Alexey V</creatorcontrib><description>The process of transport of metal particles (\(\mathit{ejecta}\)) in gases is the subject of recent works in the field of nuclear energetics. We studied the process of dissolution of titanium ejecta in warm dense hydrogen at megabar pressure. Thermodynamic and kinetic properties of the process were investigated using classical and quantum molecular dynamics methods. We estimated the dissolution time of ejecta, the saturation limit of titanium atoms with hydrogen and the heat of dissolution. It was found that particles with a radius of 1 \(\mu m\) dissolve in hydrogen in time of \(1.5 \cdot 10^{-2} \ \mu s\), while the process of mixing can be described by diffusion law. The presented approach demonstrates the final state of the titanium-hydrogen system as a homogenized fluid with completely dissolved titanium particles. This result can be generalized to all external conditions under which titanium and hydrogen are atomic fluids.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1802.08292</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dissolution ; Ejecta ; Heat of solution ; Hydrogen ; Metal particles ; Molecular dynamics ; Titanium</subject><ispartof>arXiv.org, 2018-05</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2072244025?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Mazitov, Arslan B</creatorcontrib><creatorcontrib>Oganov, Artem R</creatorcontrib><creatorcontrib>Yanilkin, Alexey V</creatorcontrib><title>Titanium-hydrogen interaction at megabar pressure</title><title>arXiv.org</title><description>The process of transport of metal particles (\(\mathit{ejecta}\)) in gases is the subject of recent works in the field of nuclear energetics. We studied the process of dissolution of titanium ejecta in warm dense hydrogen at megabar pressure. Thermodynamic and kinetic properties of the process were investigated using classical and quantum molecular dynamics methods. We estimated the dissolution time of ejecta, the saturation limit of titanium atoms with hydrogen and the heat of dissolution. It was found that particles with a radius of 1 \(\mu m\) dissolve in hydrogen in time of \(1.5 \cdot 10^{-2} \ \mu s\), while the process of mixing can be described by diffusion law. The presented approach demonstrates the final state of the titanium-hydrogen system as a homogenized fluid with completely dissolved titanium particles. This result can be generalized to all external conditions under which titanium and hydrogen are atomic fluids.</description><subject>Dissolution</subject><subject>Ejecta</subject><subject>Heat of solution</subject><subject>Hydrogen</subject><subject>Metal particles</subject><subject>Molecular dynamics</subject><subject>Titanium</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctqwzAQAEWh0JDmA3oz9Gx3tdLG8rGEviCQi-9hba8ThUROJbu0f19DexjmNqPUg4bCOiJ44vjtvwrtAAtwWOGNWqAxOncW8U6tUjoBAK5LJDILpWs_cvDTJT_-dHE4SMh8GCVyO_ohZDxmFzlwwzG7RklpinKvbns-J1n9e6nq15d6855vd28fm-dtzoSUlxVX_XzpbNsYQx0ZWzUaOmLhtdO60a7UvQON0s5ULOiMtcJksOmdM0v1-Je9xuFzkjTuT8MUw3zcI5SI1gKS-QWoPkUx</recordid><startdate>20180504</startdate><enddate>20180504</enddate><creator>Mazitov, Arslan B</creator><creator>Oganov, Artem R</creator><creator>Yanilkin, Alexey V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180504</creationdate><title>Titanium-hydrogen interaction at megabar pressure</title><author>Mazitov, Arslan B ; Oganov, Artem R ; Yanilkin, Alexey V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-79a9f267d4cb335d5349b10d5aea6811b1871f8012ec12e9ae28344ea532bf883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dissolution</topic><topic>Ejecta</topic><topic>Heat of solution</topic><topic>Hydrogen</topic><topic>Metal particles</topic><topic>Molecular dynamics</topic><topic>Titanium</topic><toplevel>online_resources</toplevel><creatorcontrib>Mazitov, Arslan B</creatorcontrib><creatorcontrib>Oganov, Artem R</creatorcontrib><creatorcontrib>Yanilkin, Alexey V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazitov, Arslan B</au><au>Oganov, Artem R</au><au>Yanilkin, Alexey V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Titanium-hydrogen interaction at megabar pressure</atitle><jtitle>arXiv.org</jtitle><date>2018-05-04</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>The process of transport of metal particles (\(\mathit{ejecta}\)) in gases is the subject of recent works in the field of nuclear energetics. We studied the process of dissolution of titanium ejecta in warm dense hydrogen at megabar pressure. Thermodynamic and kinetic properties of the process were investigated using classical and quantum molecular dynamics methods. We estimated the dissolution time of ejecta, the saturation limit of titanium atoms with hydrogen and the heat of dissolution. It was found that particles with a radius of 1 \(\mu m\) dissolve in hydrogen in time of \(1.5 \cdot 10^{-2} \ \mu s\), while the process of mixing can be described by diffusion law. The presented approach demonstrates the final state of the titanium-hydrogen system as a homogenized fluid with completely dissolved titanium particles. This result can be generalized to all external conditions under which titanium and hydrogen are atomic fluids.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1802.08292</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2072244025
source Publicly Available Content (ProQuest)
subjects Dissolution
Ejecta
Heat of solution
Hydrogen
Metal particles
Molecular dynamics
Titanium
title Titanium-hydrogen interaction at megabar pressure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Titanium-hydrogen%20interaction%20at%20megabar%20pressure&rft.jtitle=arXiv.org&rft.au=Mazitov,%20Arslan%20B&rft.date=2018-05-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1802.08292&rft_dat=%3Cproquest%3E2072244025%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-79a9f267d4cb335d5349b10d5aea6811b1871f8012ec12e9ae28344ea532bf883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2072244025&rft_id=info:pmid/&rfr_iscdi=true