Loading…
Theory of Radiative Electron Polarization in Strong Laser Fields
Radiative polarization of electrons and positrons through the Sokolov-Ternov effect is important for applications in high-energy physics. Radiative spin-polarization is a manifestation of quantum radiation reaction affecting the spin-dynamics of electrons. We recently proposed that an analogue of th...
Saved in:
Published in: | arXiv.org 2018-08 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Seipt, D D Del Sorbo Ridgers, C P Thomas, A G R |
description | Radiative polarization of electrons and positrons through the Sokolov-Ternov effect is important for applications in high-energy physics. Radiative spin-polarization is a manifestation of quantum radiation reaction affecting the spin-dynamics of electrons. We recently proposed that an analogue of the Sokolov-Ternov effect could occur in the strong electromagnetic fields of ultra-high-intensity lasers, which would result in a build-up of spin-polarization in femtoseconds. In this paper we develop a density matrix formalism for describing beam polarization in strong electromagnetic fields. We start by using the density matrix formalism to study spin-flips in non-linear Compton scattering and its dependence on the initial polarization state of the electrons. Numerical calculations show a radial polarization of the scattered electron beam in a circularly polarized laser, and we find azimuthal asymmetries in the polarization patterns for ultra-short laser pulses. A degree of polarization approaching 9 % is achieved after emitting just a single photon. We develop the theory by deriving a local constant crossed field approximation (LCFA) for the polarization density matrix, which is a generalization of the well known LCFA scattering rates. We find spin-dependent expressions that may be included in electromagnetic charged-particle simulation codes, such as particle-in-cell plasma simulation codes, using Monte-Carlo modules. In particular, these expressions include the spin-flip rates for arbitrary initial polarization of the electrons. The validity of the LCFA is confirmed by explicit comparison with an exact QED calculation of electron polarization in an ultrashort laser pulse. |
doi_str_mv | 10.48550/arxiv.1805.02027 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2072248225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072248225</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-f765ce92f5af44014b634eb3d5f83f9985978b57bdd9696ca88b275e4eadeef83</originalsourceid><addsrcrecordid>eNotjVFLwzAUhYMgOOZ-gG8Bn1vTm9wmeVPGpoOCon0faXOjHaXVpBvqr7eiT4fz8XEOY1eFyJVBFDcufnanvDACcwEC9BlbgJRFZhTABVuldBBCQKkBUS7Ybf1GY_ziY-DPzndu6k7ENz21UxwH_jT2LnbfM51LN_CXX_rKK5co8m1HvU-X7Dy4PtHqP5es3m7q9UNWPd7v1ndV5hAwC7rEliwEdEEpUaimlIoa6TEYGaw1aLVpUDfe29KWrTOmAY2kyHmi2Vmy67_Z9zh-HClN-8N4jMP8uAehAZQBQPkDT_5K6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072248225</pqid></control><display><type>article</type><title>Theory of Radiative Electron Polarization in Strong Laser Fields</title><source>Publicly Available Content (ProQuest)</source><creator>Seipt, D ; D Del Sorbo ; Ridgers, C P ; Thomas, A G R</creator><creatorcontrib>Seipt, D ; D Del Sorbo ; Ridgers, C P ; Thomas, A G R</creatorcontrib><description>Radiative polarization of electrons and positrons through the Sokolov-Ternov effect is important for applications in high-energy physics. Radiative spin-polarization is a manifestation of quantum radiation reaction affecting the spin-dynamics of electrons. We recently proposed that an analogue of the Sokolov-Ternov effect could occur in the strong electromagnetic fields of ultra-high-intensity lasers, which would result in a build-up of spin-polarization in femtoseconds. In this paper we develop a density matrix formalism for describing beam polarization in strong electromagnetic fields. We start by using the density matrix formalism to study spin-flips in non-linear Compton scattering and its dependence on the initial polarization state of the electrons. Numerical calculations show a radial polarization of the scattered electron beam in a circularly polarized laser, and we find azimuthal asymmetries in the polarization patterns for ultra-short laser pulses. A degree of polarization approaching 9 % is achieved after emitting just a single photon. We develop the theory by deriving a local constant crossed field approximation (LCFA) for the polarization density matrix, which is a generalization of the well known LCFA scattering rates. We find spin-dependent expressions that may be included in electromagnetic charged-particle simulation codes, such as particle-in-cell plasma simulation codes, using Monte-Carlo modules. In particular, these expressions include the spin-flip rates for arbitrary initial polarization of the electrons. The validity of the LCFA is confirmed by explicit comparison with an exact QED calculation of electron polarization in an ultrashort laser pulse.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1805.02027</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Charged particles ; Circular polarization ; Computer simulation ; Crossed fields ; Density ; Dependence ; Elastic scattering ; Electromagnetic fields ; Electromagnetism ; Electron beams ; Electron spin ; Formalism ; Laser beams ; Mathematical analysis ; Matrix methods ; Monte Carlo simulation ; Particle in cell technique ; Polarization (spin alignment) ; Positrons ; Quantum electrodynamics ; Spin dynamics ; Ultrahigh intensity lasers</subject><ispartof>arXiv.org, 2018-08</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2072248225?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Seipt, D</creatorcontrib><creatorcontrib>D Del Sorbo</creatorcontrib><creatorcontrib>Ridgers, C P</creatorcontrib><creatorcontrib>Thomas, A G R</creatorcontrib><title>Theory of Radiative Electron Polarization in Strong Laser Fields</title><title>arXiv.org</title><description>Radiative polarization of electrons and positrons through the Sokolov-Ternov effect is important for applications in high-energy physics. Radiative spin-polarization is a manifestation of quantum radiation reaction affecting the spin-dynamics of electrons. We recently proposed that an analogue of the Sokolov-Ternov effect could occur in the strong electromagnetic fields of ultra-high-intensity lasers, which would result in a build-up of spin-polarization in femtoseconds. In this paper we develop a density matrix formalism for describing beam polarization in strong electromagnetic fields. We start by using the density matrix formalism to study spin-flips in non-linear Compton scattering and its dependence on the initial polarization state of the electrons. Numerical calculations show a radial polarization of the scattered electron beam in a circularly polarized laser, and we find azimuthal asymmetries in the polarization patterns for ultra-short laser pulses. A degree of polarization approaching 9 % is achieved after emitting just a single photon. We develop the theory by deriving a local constant crossed field approximation (LCFA) for the polarization density matrix, which is a generalization of the well known LCFA scattering rates. We find spin-dependent expressions that may be included in electromagnetic charged-particle simulation codes, such as particle-in-cell plasma simulation codes, using Monte-Carlo modules. In particular, these expressions include the spin-flip rates for arbitrary initial polarization of the electrons. The validity of the LCFA is confirmed by explicit comparison with an exact QED calculation of electron polarization in an ultrashort laser pulse.</description><subject>Charged particles</subject><subject>Circular polarization</subject><subject>Computer simulation</subject><subject>Crossed fields</subject><subject>Density</subject><subject>Dependence</subject><subject>Elastic scattering</subject><subject>Electromagnetic fields</subject><subject>Electromagnetism</subject><subject>Electron beams</subject><subject>Electron spin</subject><subject>Formalism</subject><subject>Laser beams</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Monte Carlo simulation</subject><subject>Particle in cell technique</subject><subject>Polarization (spin alignment)</subject><subject>Positrons</subject><subject>Quantum electrodynamics</subject><subject>Spin dynamics</subject><subject>Ultrahigh intensity lasers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjVFLwzAUhYMgOOZ-gG8Bn1vTm9wmeVPGpoOCon0faXOjHaXVpBvqr7eiT4fz8XEOY1eFyJVBFDcufnanvDACcwEC9BlbgJRFZhTABVuldBBCQKkBUS7Ybf1GY_ziY-DPzndu6k7ENz21UxwH_jT2LnbfM51LN_CXX_rKK5co8m1HvU-X7Dy4PtHqP5es3m7q9UNWPd7v1ndV5hAwC7rEliwEdEEpUaimlIoa6TEYGaw1aLVpUDfe29KWrTOmAY2kyHmi2Vmy67_Z9zh-HClN-8N4jMP8uAehAZQBQPkDT_5K6Q</recordid><startdate>20180820</startdate><enddate>20180820</enddate><creator>Seipt, D</creator><creator>D Del Sorbo</creator><creator>Ridgers, C P</creator><creator>Thomas, A G R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20180820</creationdate><title>Theory of Radiative Electron Polarization in Strong Laser Fields</title><author>Seipt, D ; D Del Sorbo ; Ridgers, C P ; Thomas, A G R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-f765ce92f5af44014b634eb3d5f83f9985978b57bdd9696ca88b275e4eadeef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charged particles</topic><topic>Circular polarization</topic><topic>Computer simulation</topic><topic>Crossed fields</topic><topic>Density</topic><topic>Dependence</topic><topic>Elastic scattering</topic><topic>Electromagnetic fields</topic><topic>Electromagnetism</topic><topic>Electron beams</topic><topic>Electron spin</topic><topic>Formalism</topic><topic>Laser beams</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Monte Carlo simulation</topic><topic>Particle in cell technique</topic><topic>Polarization (spin alignment)</topic><topic>Positrons</topic><topic>Quantum electrodynamics</topic><topic>Spin dynamics</topic><topic>Ultrahigh intensity lasers</topic><toplevel>online_resources</toplevel><creatorcontrib>Seipt, D</creatorcontrib><creatorcontrib>D Del Sorbo</creatorcontrib><creatorcontrib>Ridgers, C P</creatorcontrib><creatorcontrib>Thomas, A G R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seipt, D</au><au>D Del Sorbo</au><au>Ridgers, C P</au><au>Thomas, A G R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of Radiative Electron Polarization in Strong Laser Fields</atitle><jtitle>arXiv.org</jtitle><date>2018-08-20</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Radiative polarization of electrons and positrons through the Sokolov-Ternov effect is important for applications in high-energy physics. Radiative spin-polarization is a manifestation of quantum radiation reaction affecting the spin-dynamics of electrons. We recently proposed that an analogue of the Sokolov-Ternov effect could occur in the strong electromagnetic fields of ultra-high-intensity lasers, which would result in a build-up of spin-polarization in femtoseconds. In this paper we develop a density matrix formalism for describing beam polarization in strong electromagnetic fields. We start by using the density matrix formalism to study spin-flips in non-linear Compton scattering and its dependence on the initial polarization state of the electrons. Numerical calculations show a radial polarization of the scattered electron beam in a circularly polarized laser, and we find azimuthal asymmetries in the polarization patterns for ultra-short laser pulses. A degree of polarization approaching 9 % is achieved after emitting just a single photon. We develop the theory by deriving a local constant crossed field approximation (LCFA) for the polarization density matrix, which is a generalization of the well known LCFA scattering rates. We find spin-dependent expressions that may be included in electromagnetic charged-particle simulation codes, such as particle-in-cell plasma simulation codes, using Monte-Carlo modules. In particular, these expressions include the spin-flip rates for arbitrary initial polarization of the electrons. The validity of the LCFA is confirmed by explicit comparison with an exact QED calculation of electron polarization in an ultrashort laser pulse.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1805.02027</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2072248225 |
source | Publicly Available Content (ProQuest) |
subjects | Charged particles Circular polarization Computer simulation Crossed fields Density Dependence Elastic scattering Electromagnetic fields Electromagnetism Electron beams Electron spin Formalism Laser beams Mathematical analysis Matrix methods Monte Carlo simulation Particle in cell technique Polarization (spin alignment) Positrons Quantum electrodynamics Spin dynamics Ultrahigh intensity lasers |
title | Theory of Radiative Electron Polarization in Strong Laser Fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20Radiative%20Electron%20Polarization%20in%20Strong%20Laser%20Fields&rft.jtitle=arXiv.org&rft.au=Seipt,%20D&rft.date=2018-08-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1805.02027&rft_dat=%3Cproquest%3E2072248225%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-f765ce92f5af44014b634eb3d5f83f9985978b57bdd9696ca88b275e4eadeef83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2072248225&rft_id=info:pmid/&rfr_iscdi=true |