Loading…

Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger

Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the post-merger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically-driven heating processes, so realistic models must...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-10
Main Authors: Fatemeh Hossein Nouri, Duez, Matthew D, Foucart, Francois, Deaton, M Brett, Haas, Roland, Haddadi, Milad, Kidder, Lawrence E, Ott, Christian D, Pfeiffer, Harald P, Scheel, Mark A, Szilagyi, Bela
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fatemeh Hossein Nouri
Duez, Matthew D
Foucart, Francois
Deaton, M Brett
Haas, Roland
Haddadi, Milad
Kidder, Lawrence E
Ott, Christian D
Pfeiffer, Harald P
Scheel, Mark A
Szilagyi, Bela
description Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the post-merger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically-driven heating processes, so realistic models must include both effects. In this paper, we study the post-merger evolution of a magnetized black hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial post-merger state provided by previous numerical relativity simulations. We use a finite-temperature nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve the needed accuracy, we introduce improvements to SpEC's implementation of general-relativistic magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly over the first 20\,ms but in roughly the same way for magnetized and nonmagnetized disks. The heating rate and disk's luminosity decrease much more slowly thereafter. These features of the evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and seed field strength, although turbulent effects are not fully converged
doi_str_mv 10.48550/arxiv.1710.07423
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2072268526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072268526</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-a39bde9bcd9f4e32e5e0d359a912a68bca7042ef128e26ef5966b147d002be9b3</originalsourceid><addsrcrecordid>eNotj09PwkAUxDcmJhLkA3jbxKvF7dvutj0CopigHuROXttXWKhd3W7xz6d3BU-TTOY3k2HsKhbjJFNK3KL7ModxnAZDpAnIMzYAKeMoSwAu2KjrdkII0CkoJQfsc36wTe-Nbbmtud8Sf8JNS978UHXDn6n3zrQ2mlnbUMUnZenoGL4z3Z6b9khMak_uDf32rwL5tMFyzxcBOPEh_erR8alp0X3zJ3IbcpfsvMamo9G_Dtnqfr6aLaLly8PjbLKMUIGOUOZFRXlRVnmdkARSJCqpcsxjQJ0VJaYiAapjyAg01SrXuoiTtAoPi8DJIbs-1b47-9FT59c727s2LK5BpAA6CzPyF7dxXiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072268526</pqid></control><display><type>article</type><title>Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger</title><source>Publicly Available Content Database</source><creator>Fatemeh Hossein Nouri ; Duez, Matthew D ; Foucart, Francois ; Deaton, M Brett ; Haas, Roland ; Haddadi, Milad ; Kidder, Lawrence E ; Ott, Christian D ; Pfeiffer, Harald P ; Scheel, Mark A ; Szilagyi, Bela</creator><creatorcontrib>Fatemeh Hossein Nouri ; Duez, Matthew D ; Foucart, Francois ; Deaton, M Brett ; Haas, Roland ; Haddadi, Milad ; Kidder, Lawrence E ; Ott, Christian D ; Pfeiffer, Harald P ; Scheel, Mark A ; Szilagyi, Bela</creatorcontrib><description>Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the post-merger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically-driven heating processes, so realistic models must include both effects. In this paper, we study the post-merger evolution of a magnetized black hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial post-merger state provided by previous numerical relativity simulations. We use a finite-temperature nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve the needed accuracy, we introduce improvements to SpEC's implementation of general-relativistic magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly over the first 20\,ms but in roughly the same way for magnetized and nonmagnetized disks. The heating rate and disk's luminosity decrease much more slowly thereafter. These features of the evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and seed field strength, although turbulent effects are not fully converged</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1710.07423</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accretion disks ; Angular momentum ; Binary stars ; Black holes ; Computational fluid dynamics ; Computer simulation ; Cooling effects ; Equations of state ; Field strength ; Gamma ray bursts ; Gamma rays ; Heating rate ; Luminosity ; Magnetohydrodynamic turbulence ; Mathematical analysis ; Mathematical models ; Neutrinos ; Neutron stars ; Numerical relativity ; Relativity ; Stellar evolution ; Stellar system evolution ; Temperature effects ; Toruses</subject><ispartof>arXiv.org, 2017-10</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2072268526?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Fatemeh Hossein Nouri</creatorcontrib><creatorcontrib>Duez, Matthew D</creatorcontrib><creatorcontrib>Foucart, Francois</creatorcontrib><creatorcontrib>Deaton, M Brett</creatorcontrib><creatorcontrib>Haas, Roland</creatorcontrib><creatorcontrib>Haddadi, Milad</creatorcontrib><creatorcontrib>Kidder, Lawrence E</creatorcontrib><creatorcontrib>Ott, Christian D</creatorcontrib><creatorcontrib>Pfeiffer, Harald P</creatorcontrib><creatorcontrib>Scheel, Mark A</creatorcontrib><creatorcontrib>Szilagyi, Bela</creatorcontrib><title>Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger</title><title>arXiv.org</title><description>Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the post-merger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically-driven heating processes, so realistic models must include both effects. In this paper, we study the post-merger evolution of a magnetized black hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial post-merger state provided by previous numerical relativity simulations. We use a finite-temperature nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve the needed accuracy, we introduce improvements to SpEC's implementation of general-relativistic magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly over the first 20\,ms but in roughly the same way for magnetized and nonmagnetized disks. The heating rate and disk's luminosity decrease much more slowly thereafter. These features of the evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and seed field strength, although turbulent effects are not fully converged</description><subject>Accretion disks</subject><subject>Angular momentum</subject><subject>Binary stars</subject><subject>Black holes</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cooling effects</subject><subject>Equations of state</subject><subject>Field strength</subject><subject>Gamma ray bursts</subject><subject>Gamma rays</subject><subject>Heating rate</subject><subject>Luminosity</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neutrinos</subject><subject>Neutron stars</subject><subject>Numerical relativity</subject><subject>Relativity</subject><subject>Stellar evolution</subject><subject>Stellar system evolution</subject><subject>Temperature effects</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj09PwkAUxDcmJhLkA3jbxKvF7dvutj0CopigHuROXttXWKhd3W7xz6d3BU-TTOY3k2HsKhbjJFNK3KL7ModxnAZDpAnIMzYAKeMoSwAu2KjrdkII0CkoJQfsc36wTe-Nbbmtud8Sf8JNS978UHXDn6n3zrQ2mlnbUMUnZenoGL4z3Z6b9khMak_uDf32rwL5tMFyzxcBOPEh_erR8alp0X3zJ3IbcpfsvMamo9G_Dtnqfr6aLaLly8PjbLKMUIGOUOZFRXlRVnmdkARSJCqpcsxjQJ0VJaYiAapjyAg01SrXuoiTtAoPi8DJIbs-1b47-9FT59c727s2LK5BpAA6CzPyF7dxXiE</recordid><startdate>20171020</startdate><enddate>20171020</enddate><creator>Fatemeh Hossein Nouri</creator><creator>Duez, Matthew D</creator><creator>Foucart, Francois</creator><creator>Deaton, M Brett</creator><creator>Haas, Roland</creator><creator>Haddadi, Milad</creator><creator>Kidder, Lawrence E</creator><creator>Ott, Christian D</creator><creator>Pfeiffer, Harald P</creator><creator>Scheel, Mark A</creator><creator>Szilagyi, Bela</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171020</creationdate><title>Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger</title><author>Fatemeh Hossein Nouri ; Duez, Matthew D ; Foucart, Francois ; Deaton, M Brett ; Haas, Roland ; Haddadi, Milad ; Kidder, Lawrence E ; Ott, Christian D ; Pfeiffer, Harald P ; Scheel, Mark A ; Szilagyi, Bela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-a39bde9bcd9f4e32e5e0d359a912a68bca7042ef128e26ef5966b147d002be9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accretion disks</topic><topic>Angular momentum</topic><topic>Binary stars</topic><topic>Black holes</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cooling effects</topic><topic>Equations of state</topic><topic>Field strength</topic><topic>Gamma ray bursts</topic><topic>Gamma rays</topic><topic>Heating rate</topic><topic>Luminosity</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neutrinos</topic><topic>Neutron stars</topic><topic>Numerical relativity</topic><topic>Relativity</topic><topic>Stellar evolution</topic><topic>Stellar system evolution</topic><topic>Temperature effects</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Fatemeh Hossein Nouri</creatorcontrib><creatorcontrib>Duez, Matthew D</creatorcontrib><creatorcontrib>Foucart, Francois</creatorcontrib><creatorcontrib>Deaton, M Brett</creatorcontrib><creatorcontrib>Haas, Roland</creatorcontrib><creatorcontrib>Haddadi, Milad</creatorcontrib><creatorcontrib>Kidder, Lawrence E</creatorcontrib><creatorcontrib>Ott, Christian D</creatorcontrib><creatorcontrib>Pfeiffer, Harald P</creatorcontrib><creatorcontrib>Scheel, Mark A</creatorcontrib><creatorcontrib>Szilagyi, Bela</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatemeh Hossein Nouri</au><au>Duez, Matthew D</au><au>Foucart, Francois</au><au>Deaton, M Brett</au><au>Haas, Roland</au><au>Haddadi, Milad</au><au>Kidder, Lawrence E</au><au>Ott, Christian D</au><au>Pfeiffer, Harald P</au><au>Scheel, Mark A</au><au>Szilagyi, Bela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger</atitle><jtitle>arXiv.org</jtitle><date>2017-10-20</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the post-merger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically-driven heating processes, so realistic models must include both effects. In this paper, we study the post-merger evolution of a magnetized black hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial post-merger state provided by previous numerical relativity simulations. We use a finite-temperature nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve the needed accuracy, we introduce improvements to SpEC's implementation of general-relativistic magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly over the first 20\,ms but in roughly the same way for magnetized and nonmagnetized disks. The heating rate and disk's luminosity decrease much more slowly thereafter. These features of the evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and seed field strength, although turbulent effects are not fully converged</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1710.07423</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2072268526
source Publicly Available Content Database
subjects Accretion disks
Angular momentum
Binary stars
Black holes
Computational fluid dynamics
Computer simulation
Cooling effects
Equations of state
Field strength
Gamma ray bursts
Gamma rays
Heating rate
Luminosity
Magnetohydrodynamic turbulence
Mathematical analysis
Mathematical models
Neutrinos
Neutron stars
Numerical relativity
Relativity
Stellar evolution
Stellar system evolution
Temperature effects
Toruses
title Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20Magnetized,%20Neutrino-Cooled%20Accretion%20Disk%20in%20the%20Aftermath%20of%20a%20Black%20Hole%20Neutron%20Star%20Binary%20Merger&rft.jtitle=arXiv.org&rft.au=Fatemeh%20Hossein%20Nouri&rft.date=2017-10-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1710.07423&rft_dat=%3Cproquest%3E2072268526%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-a39bde9bcd9f4e32e5e0d359a912a68bca7042ef128e26ef5966b147d002be9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2072268526&rft_id=info:pmid/&rfr_iscdi=true