Loading…
Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger
Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the post-merger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically-driven heating processes, so realistic models must...
Saved in:
Published in: | arXiv.org 2017-10 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fatemeh Hossein Nouri Duez, Matthew D Foucart, Francois Deaton, M Brett Haas, Roland Haddadi, Milad Kidder, Lawrence E Ott, Christian D Pfeiffer, Harald P Scheel, Mark A Szilagyi, Bela |
description | Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the post-merger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically-driven heating processes, so realistic models must include both effects. In this paper, we study the post-merger evolution of a magnetized black hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial post-merger state provided by previous numerical relativity simulations. We use a finite-temperature nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve the needed accuracy, we introduce improvements to SpEC's implementation of general-relativistic magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly over the first 20\,ms but in roughly the same way for magnetized and nonmagnetized disks. The heating rate and disk's luminosity decrease much more slowly thereafter. These features of the evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and seed field strength, although turbulent effects are not fully converged |
doi_str_mv | 10.48550/arxiv.1710.07423 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2072268526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072268526</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-a39bde9bcd9f4e32e5e0d359a912a68bca7042ef128e26ef5966b147d002be9b3</originalsourceid><addsrcrecordid>eNotj09PwkAUxDcmJhLkA3jbxKvF7dvutj0CopigHuROXttXWKhd3W7xz6d3BU-TTOY3k2HsKhbjJFNK3KL7ModxnAZDpAnIMzYAKeMoSwAu2KjrdkII0CkoJQfsc36wTe-Nbbmtud8Sf8JNS978UHXDn6n3zrQ2mlnbUMUnZenoGL4z3Z6b9khMak_uDf32rwL5tMFyzxcBOPEh_erR8alp0X3zJ3IbcpfsvMamo9G_Dtnqfr6aLaLly8PjbLKMUIGOUOZFRXlRVnmdkARSJCqpcsxjQJ0VJaYiAapjyAg01SrXuoiTtAoPi8DJIbs-1b47-9FT59c727s2LK5BpAA6CzPyF7dxXiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072268526</pqid></control><display><type>article</type><title>Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger</title><source>Publicly Available Content Database</source><creator>Fatemeh Hossein Nouri ; Duez, Matthew D ; Foucart, Francois ; Deaton, M Brett ; Haas, Roland ; Haddadi, Milad ; Kidder, Lawrence E ; Ott, Christian D ; Pfeiffer, Harald P ; Scheel, Mark A ; Szilagyi, Bela</creator><creatorcontrib>Fatemeh Hossein Nouri ; Duez, Matthew D ; Foucart, Francois ; Deaton, M Brett ; Haas, Roland ; Haddadi, Milad ; Kidder, Lawrence E ; Ott, Christian D ; Pfeiffer, Harald P ; Scheel, Mark A ; Szilagyi, Bela</creatorcontrib><description>Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the post-merger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically-driven heating processes, so realistic models must include both effects. In this paper, we study the post-merger evolution of a magnetized black hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial post-merger state provided by previous numerical relativity simulations. We use a finite-temperature nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve the needed accuracy, we introduce improvements to SpEC's implementation of general-relativistic magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly over the first 20\,ms but in roughly the same way for magnetized and nonmagnetized disks. The heating rate and disk's luminosity decrease much more slowly thereafter. These features of the evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and seed field strength, although turbulent effects are not fully converged</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1710.07423</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accretion disks ; Angular momentum ; Binary stars ; Black holes ; Computational fluid dynamics ; Computer simulation ; Cooling effects ; Equations of state ; Field strength ; Gamma ray bursts ; Gamma rays ; Heating rate ; Luminosity ; Magnetohydrodynamic turbulence ; Mathematical analysis ; Mathematical models ; Neutrinos ; Neutron stars ; Numerical relativity ; Relativity ; Stellar evolution ; Stellar system evolution ; Temperature effects ; Toruses</subject><ispartof>arXiv.org, 2017-10</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2072268526?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Fatemeh Hossein Nouri</creatorcontrib><creatorcontrib>Duez, Matthew D</creatorcontrib><creatorcontrib>Foucart, Francois</creatorcontrib><creatorcontrib>Deaton, M Brett</creatorcontrib><creatorcontrib>Haas, Roland</creatorcontrib><creatorcontrib>Haddadi, Milad</creatorcontrib><creatorcontrib>Kidder, Lawrence E</creatorcontrib><creatorcontrib>Ott, Christian D</creatorcontrib><creatorcontrib>Pfeiffer, Harald P</creatorcontrib><creatorcontrib>Scheel, Mark A</creatorcontrib><creatorcontrib>Szilagyi, Bela</creatorcontrib><title>Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger</title><title>arXiv.org</title><description>Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the post-merger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically-driven heating processes, so realistic models must include both effects. In this paper, we study the post-merger evolution of a magnetized black hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial post-merger state provided by previous numerical relativity simulations. We use a finite-temperature nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve the needed accuracy, we introduce improvements to SpEC's implementation of general-relativistic magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly over the first 20\,ms but in roughly the same way for magnetized and nonmagnetized disks. The heating rate and disk's luminosity decrease much more slowly thereafter. These features of the evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and seed field strength, although turbulent effects are not fully converged</description><subject>Accretion disks</subject><subject>Angular momentum</subject><subject>Binary stars</subject><subject>Black holes</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cooling effects</subject><subject>Equations of state</subject><subject>Field strength</subject><subject>Gamma ray bursts</subject><subject>Gamma rays</subject><subject>Heating rate</subject><subject>Luminosity</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neutrinos</subject><subject>Neutron stars</subject><subject>Numerical relativity</subject><subject>Relativity</subject><subject>Stellar evolution</subject><subject>Stellar system evolution</subject><subject>Temperature effects</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj09PwkAUxDcmJhLkA3jbxKvF7dvutj0CopigHuROXttXWKhd3W7xz6d3BU-TTOY3k2HsKhbjJFNK3KL7ModxnAZDpAnIMzYAKeMoSwAu2KjrdkII0CkoJQfsc36wTe-Nbbmtud8Sf8JNS978UHXDn6n3zrQ2mlnbUMUnZenoGL4z3Z6b9khMak_uDf32rwL5tMFyzxcBOPEh_erR8alp0X3zJ3IbcpfsvMamo9G_Dtnqfr6aLaLly8PjbLKMUIGOUOZFRXlRVnmdkARSJCqpcsxjQJ0VJaYiAapjyAg01SrXuoiTtAoPi8DJIbs-1b47-9FT59c727s2LK5BpAA6CzPyF7dxXiE</recordid><startdate>20171020</startdate><enddate>20171020</enddate><creator>Fatemeh Hossein Nouri</creator><creator>Duez, Matthew D</creator><creator>Foucart, Francois</creator><creator>Deaton, M Brett</creator><creator>Haas, Roland</creator><creator>Haddadi, Milad</creator><creator>Kidder, Lawrence E</creator><creator>Ott, Christian D</creator><creator>Pfeiffer, Harald P</creator><creator>Scheel, Mark A</creator><creator>Szilagyi, Bela</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171020</creationdate><title>Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger</title><author>Fatemeh Hossein Nouri ; Duez, Matthew D ; Foucart, Francois ; Deaton, M Brett ; Haas, Roland ; Haddadi, Milad ; Kidder, Lawrence E ; Ott, Christian D ; Pfeiffer, Harald P ; Scheel, Mark A ; Szilagyi, Bela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-a39bde9bcd9f4e32e5e0d359a912a68bca7042ef128e26ef5966b147d002be9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accretion disks</topic><topic>Angular momentum</topic><topic>Binary stars</topic><topic>Black holes</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cooling effects</topic><topic>Equations of state</topic><topic>Field strength</topic><topic>Gamma ray bursts</topic><topic>Gamma rays</topic><topic>Heating rate</topic><topic>Luminosity</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neutrinos</topic><topic>Neutron stars</topic><topic>Numerical relativity</topic><topic>Relativity</topic><topic>Stellar evolution</topic><topic>Stellar system evolution</topic><topic>Temperature effects</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Fatemeh Hossein Nouri</creatorcontrib><creatorcontrib>Duez, Matthew D</creatorcontrib><creatorcontrib>Foucart, Francois</creatorcontrib><creatorcontrib>Deaton, M Brett</creatorcontrib><creatorcontrib>Haas, Roland</creatorcontrib><creatorcontrib>Haddadi, Milad</creatorcontrib><creatorcontrib>Kidder, Lawrence E</creatorcontrib><creatorcontrib>Ott, Christian D</creatorcontrib><creatorcontrib>Pfeiffer, Harald P</creatorcontrib><creatorcontrib>Scheel, Mark A</creatorcontrib><creatorcontrib>Szilagyi, Bela</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatemeh Hossein Nouri</au><au>Duez, Matthew D</au><au>Foucart, Francois</au><au>Deaton, M Brett</au><au>Haas, Roland</au><au>Haddadi, Milad</au><au>Kidder, Lawrence E</au><au>Ott, Christian D</au><au>Pfeiffer, Harald P</au><au>Scheel, Mark A</au><au>Szilagyi, Bela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger</atitle><jtitle>arXiv.org</jtitle><date>2017-10-20</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the post-merger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically-driven heating processes, so realistic models must include both effects. In this paper, we study the post-merger evolution of a magnetized black hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial post-merger state provided by previous numerical relativity simulations. We use a finite-temperature nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve the needed accuracy, we introduce improvements to SpEC's implementation of general-relativistic magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly over the first 20\,ms but in roughly the same way for magnetized and nonmagnetized disks. The heating rate and disk's luminosity decrease much more slowly thereafter. These features of the evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and seed field strength, although turbulent effects are not fully converged</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1710.07423</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2072268526 |
source | Publicly Available Content Database |
subjects | Accretion disks Angular momentum Binary stars Black holes Computational fluid dynamics Computer simulation Cooling effects Equations of state Field strength Gamma ray bursts Gamma rays Heating rate Luminosity Magnetohydrodynamic turbulence Mathematical analysis Mathematical models Neutrinos Neutron stars Numerical relativity Relativity Stellar evolution Stellar system evolution Temperature effects Toruses |
title | Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20Magnetized,%20Neutrino-Cooled%20Accretion%20Disk%20in%20the%20Aftermath%20of%20a%20Black%20Hole%20Neutron%20Star%20Binary%20Merger&rft.jtitle=arXiv.org&rft.au=Fatemeh%20Hossein%20Nouri&rft.date=2017-10-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1710.07423&rft_dat=%3Cproquest%3E2072268526%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-a39bde9bcd9f4e32e5e0d359a912a68bca7042ef128e26ef5966b147d002be9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2072268526&rft_id=info:pmid/&rfr_iscdi=true |