Loading…
Spin-optomechanical coupling between light and a nanofiber torsional mode
Light that carries linear or angular momentum can interact with a mechanical object giving rise to optomechanical effects. In particular, a photon transfers its intrinsic angular momentum to an object when the object either absorbs the photon or changes the photon polarization, as in an action/react...
Saved in:
Published in: | arXiv.org 2017-12 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Light that carries linear or angular momentum can interact with a mechanical object giving rise to optomechanical effects. In particular, a photon transfers its intrinsic angular momentum to an object when the object either absorbs the photon or changes the photon polarization, as in an action/reaction force pair. Here, we present the implementation of light-induced selective resonant driving of the torsional mechanical modes of a single-mode tapered optical nanofiber. The nanofiber torsional mode spectrum is characterized by polarimetry, showing narrow natural resonances (Q\(\approx\)2,000). By sending amplitude modulated light through the nanofiber, we resonantly drive individual torsional modes as a function of the light polarization. By varying the input polarization to the fiber, we find the largest amplification of a mechanical oscillation (>35 dB) is observed when driving the system with light containing longitudinal spin on the nanofiber waist. These results present optical nanofibers as a platform suitable for quantum spin-optomechanics experiments. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1712.04605 |