Loading…
PASTA sequence composition is a predictive tool for protein class identification
PASTA domains are small modules expressed in bacteria and found in one or multiple copies at the C-terminal end of several penicillin binding proteins (PBPs) and Ser/Thr protein kinases (STPKs) and represent potential targets for a new class of antibiotics. PASTA domains are currently annotated as s...
Saved in:
Published in: | Amino acids 2018-10, Vol.50 (10), p.1441-1450 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-edb9024f2583d9603d7c0f8a673488350951710790695e4ab15fc2cdd3d639063 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-edb9024f2583d9603d7c0f8a673488350951710790695e4ab15fc2cdd3d639063 |
container_end_page | 1450 |
container_issue | 10 |
container_start_page | 1441 |
container_title | Amino acids |
container_volume | 50 |
creator | Calvanese, Luisa Falcigno, Lucia Squeglia, Flavia Berisio, Rita D’Auria, Gabriella |
description | PASTA domains are small modules expressed in bacteria and found in one or multiple copies at the C-terminal end of several penicillin binding proteins (PBPs) and Ser/Thr protein kinases (STPKs) and represent potential targets for a new class of antibiotics. PASTA domains are currently annotated as sensor domains, as they are thought to activate their cognate proteins in response to binding to opportune ligands. However, recent studies have shown that PASTA domains linked to proteins of different classes, STPKs or PBPs, do not share the same binding abilities. Despite this, there is currently no way to distinguish between PASTA domains from the two classes, since all of them share the same fold, independent of the class they belong to. To identify a predictive tool of class identification, we here analyse a pool of parameters, including amino acid compositions and total charges of PASTA domains either linked to PBPs or to STPKs. We screened sequences from Actinobacteria, Firmicutes and Bacteroidetes. The first two
phyla
include some of the most dangerous micro-organisms for human health such as
Mycobacterium tuberculosis
and
Staphylococcus aureus
. Based on this analysis, our study proposes a predictive method to assign PASTA domains with unknown origin to their corresponding enzyme class, based solely on sequence information. |
doi_str_mv | 10.1007/s00726-018-2621-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2072906074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072906074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-edb9024f2583d9603d7c0f8a673488350951710790695e4ab15fc2cdd3d639063</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlZ_gBcJeF6dfGw2OZbiFwgWrOewTbKS0m5qkgr-e1O26slLhsy87zvDg9AlgRsC0Nym8lBRAZEVFZRU8giNCWflR5Q6RmNQTFWc12SEzlJaARAqiThFIwbAKCdijObz6etiipP72LneOGzCZhuSzz702Cfc4m101pvsPx3OIaxxF2Lphex8j826TQl76_rsO2_avescnXTtOrmLQ52gt_u7xeyxen55eJpNnyvDmMqVs0sFlHe0lswqAcw2BjrZioZxKVkNqiYNgUaBULXj7ZLUnaHGWmYFK002QddDbjmm3J6yXoVd7MtKTQuVIoGGFxUZVCaGlKLr9Db6TRu_NAG9Z6gHhrow1HuGWhbP1SF5t9w4--v4gVYEdBCkMurfXfxb_X_qNxAuesg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072906074</pqid></control><display><type>article</type><title>PASTA sequence composition is a predictive tool for protein class identification</title><source>Springer Nature</source><creator>Calvanese, Luisa ; Falcigno, Lucia ; Squeglia, Flavia ; Berisio, Rita ; D’Auria, Gabriella</creator><creatorcontrib>Calvanese, Luisa ; Falcigno, Lucia ; Squeglia, Flavia ; Berisio, Rita ; D’Auria, Gabriella</creatorcontrib><description>PASTA domains are small modules expressed in bacteria and found in one or multiple copies at the C-terminal end of several penicillin binding proteins (PBPs) and Ser/Thr protein kinases (STPKs) and represent potential targets for a new class of antibiotics. PASTA domains are currently annotated as sensor domains, as they are thought to activate their cognate proteins in response to binding to opportune ligands. However, recent studies have shown that PASTA domains linked to proteins of different classes, STPKs or PBPs, do not share the same binding abilities. Despite this, there is currently no way to distinguish between PASTA domains from the two classes, since all of them share the same fold, independent of the class they belong to. To identify a predictive tool of class identification, we here analyse a pool of parameters, including amino acid compositions and total charges of PASTA domains either linked to PBPs or to STPKs. We screened sequences from Actinobacteria, Firmicutes and Bacteroidetes. The first two
phyla
include some of the most dangerous micro-organisms for human health such as
Mycobacterium tuberculosis
and
Staphylococcus aureus
. Based on this analysis, our study proposes a predictive method to assign PASTA domains with unknown origin to their corresponding enzyme class, based solely on sequence information.</description><identifier>ISSN: 0939-4451</identifier><identifier>EISSN: 1438-2199</identifier><identifier>DOI: 10.1007/s00726-018-2621-8</identifier><identifier>PMID: 30032416</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Amino acids ; Analytical Chemistry ; Antibiotics ; Binding ; Biochemical Engineering ; Biochemistry ; Biomedical and Life Sciences ; Composition ; Kinases ; Life Sciences ; Neurobiology ; Original Article ; Parameter identification ; Penicillin ; Protein kinase ; Proteins ; Proteomics ; Tuberculosis</subject><ispartof>Amino acids, 2018-10, Vol.50 (10), p.1441-1450</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2018</rights><rights>Amino Acids is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-edb9024f2583d9603d7c0f8a673488350951710790695e4ab15fc2cdd3d639063</citedby><cites>FETCH-LOGICAL-c339t-edb9024f2583d9603d7c0f8a673488350951710790695e4ab15fc2cdd3d639063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30032416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calvanese, Luisa</creatorcontrib><creatorcontrib>Falcigno, Lucia</creatorcontrib><creatorcontrib>Squeglia, Flavia</creatorcontrib><creatorcontrib>Berisio, Rita</creatorcontrib><creatorcontrib>D’Auria, Gabriella</creatorcontrib><title>PASTA sequence composition is a predictive tool for protein class identification</title><title>Amino acids</title><addtitle>Amino Acids</addtitle><addtitle>Amino Acids</addtitle><description>PASTA domains are small modules expressed in bacteria and found in one or multiple copies at the C-terminal end of several penicillin binding proteins (PBPs) and Ser/Thr protein kinases (STPKs) and represent potential targets for a new class of antibiotics. PASTA domains are currently annotated as sensor domains, as they are thought to activate their cognate proteins in response to binding to opportune ligands. However, recent studies have shown that PASTA domains linked to proteins of different classes, STPKs or PBPs, do not share the same binding abilities. Despite this, there is currently no way to distinguish between PASTA domains from the two classes, since all of them share the same fold, independent of the class they belong to. To identify a predictive tool of class identification, we here analyse a pool of parameters, including amino acid compositions and total charges of PASTA domains either linked to PBPs or to STPKs. We screened sequences from Actinobacteria, Firmicutes and Bacteroidetes. The first two
phyla
include some of the most dangerous micro-organisms for human health such as
Mycobacterium tuberculosis
and
Staphylococcus aureus
. Based on this analysis, our study proposes a predictive method to assign PASTA domains with unknown origin to their corresponding enzyme class, based solely on sequence information.</description><subject>Amino acids</subject><subject>Analytical Chemistry</subject><subject>Antibiotics</subject><subject>Binding</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Composition</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Neurobiology</subject><subject>Original Article</subject><subject>Parameter identification</subject><subject>Penicillin</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Tuberculosis</subject><issn>0939-4451</issn><issn>1438-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMotlZ_gBcJeF6dfGw2OZbiFwgWrOewTbKS0m5qkgr-e1O26slLhsy87zvDg9AlgRsC0Nym8lBRAZEVFZRU8giNCWflR5Q6RmNQTFWc12SEzlJaARAqiThFIwbAKCdijObz6etiipP72LneOGzCZhuSzz702Cfc4m101pvsPx3OIaxxF2Lphex8j826TQl76_rsO2_avescnXTtOrmLQ52gt_u7xeyxen55eJpNnyvDmMqVs0sFlHe0lswqAcw2BjrZioZxKVkNqiYNgUaBULXj7ZLUnaHGWmYFK002QddDbjmm3J6yXoVd7MtKTQuVIoGGFxUZVCaGlKLr9Db6TRu_NAG9Z6gHhrow1HuGWhbP1SF5t9w4--v4gVYEdBCkMurfXfxb_X_qNxAuesg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Calvanese, Luisa</creator><creator>Falcigno, Lucia</creator><creator>Squeglia, Flavia</creator><creator>Berisio, Rita</creator><creator>D’Auria, Gabriella</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20181001</creationdate><title>PASTA sequence composition is a predictive tool for protein class identification</title><author>Calvanese, Luisa ; Falcigno, Lucia ; Squeglia, Flavia ; Berisio, Rita ; D’Auria, Gabriella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-edb9024f2583d9603d7c0f8a673488350951710790695e4ab15fc2cdd3d639063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino acids</topic><topic>Analytical Chemistry</topic><topic>Antibiotics</topic><topic>Binding</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Composition</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Neurobiology</topic><topic>Original Article</topic><topic>Parameter identification</topic><topic>Penicillin</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvanese, Luisa</creatorcontrib><creatorcontrib>Falcigno, Lucia</creatorcontrib><creatorcontrib>Squeglia, Flavia</creatorcontrib><creatorcontrib>Berisio, Rita</creatorcontrib><creatorcontrib>D’Auria, Gabriella</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Amino acids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvanese, Luisa</au><au>Falcigno, Lucia</au><au>Squeglia, Flavia</au><au>Berisio, Rita</au><au>D’Auria, Gabriella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PASTA sequence composition is a predictive tool for protein class identification</atitle><jtitle>Amino acids</jtitle><stitle>Amino Acids</stitle><addtitle>Amino Acids</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>50</volume><issue>10</issue><spage>1441</spage><epage>1450</epage><pages>1441-1450</pages><issn>0939-4451</issn><eissn>1438-2199</eissn><abstract>PASTA domains are small modules expressed in bacteria and found in one or multiple copies at the C-terminal end of several penicillin binding proteins (PBPs) and Ser/Thr protein kinases (STPKs) and represent potential targets for a new class of antibiotics. PASTA domains are currently annotated as sensor domains, as they are thought to activate their cognate proteins in response to binding to opportune ligands. However, recent studies have shown that PASTA domains linked to proteins of different classes, STPKs or PBPs, do not share the same binding abilities. Despite this, there is currently no way to distinguish between PASTA domains from the two classes, since all of them share the same fold, independent of the class they belong to. To identify a predictive tool of class identification, we here analyse a pool of parameters, including amino acid compositions and total charges of PASTA domains either linked to PBPs or to STPKs. We screened sequences from Actinobacteria, Firmicutes and Bacteroidetes. The first two
phyla
include some of the most dangerous micro-organisms for human health such as
Mycobacterium tuberculosis
and
Staphylococcus aureus
. Based on this analysis, our study proposes a predictive method to assign PASTA domains with unknown origin to their corresponding enzyme class, based solely on sequence information.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>30032416</pmid><doi>10.1007/s00726-018-2621-8</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-4451 |
ispartof | Amino acids, 2018-10, Vol.50 (10), p.1441-1450 |
issn | 0939-4451 1438-2199 |
language | eng |
recordid | cdi_proquest_journals_2072906074 |
source | Springer Nature |
subjects | Amino acids Analytical Chemistry Antibiotics Binding Biochemical Engineering Biochemistry Biomedical and Life Sciences Composition Kinases Life Sciences Neurobiology Original Article Parameter identification Penicillin Protein kinase Proteins Proteomics Tuberculosis |
title | PASTA sequence composition is a predictive tool for protein class identification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PASTA%20sequence%20composition%20is%20a%20predictive%20tool%20for%20protein%20class%20identification&rft.jtitle=Amino%20acids&rft.au=Calvanese,%20Luisa&rft.date=2018-10-01&rft.volume=50&rft.issue=10&rft.spage=1441&rft.epage=1450&rft.pages=1441-1450&rft.issn=0939-4451&rft.eissn=1438-2199&rft_id=info:doi/10.1007/s00726-018-2621-8&rft_dat=%3Cproquest_cross%3E2072906074%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-edb9024f2583d9603d7c0f8a673488350951710790695e4ab15fc2cdd3d639063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2072906074&rft_id=info:pmid/30032416&rfr_iscdi=true |