Loading…
Diverse Stochasticity Leads a Colony of Ants to Optimal Foraging
A mathematical model of garden ants (Laius japonicus) is introduced herein to investigate the relationship between the distribution of the degree of stochasticity in following pheromone trails and the group foraging efficiency. Numerical simulations of the model indicate that depending on the system...
Saved in:
Published in: | arXiv.org 2019-01 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A mathematical model of garden ants (Laius japonicus) is introduced herein to investigate the relationship between the distribution of the degree of stochasticity in following pheromone trails and the group foraging efficiency. Numerical simulations of the model indicate that depending on the systematic change of the feeding environment, the optimal distribution of stochasticity shifts from a mixture of almost deterministic and mildly stochastic ants to a contrasted mixture of almost deterministic ants and highly stochastic ants. In addition, the interaction between the stochasticity and the pheromone path regulates the dynamics of the foraging efficiency optimization. Stochasticity could strengthen the collective efficiency when stochasticity to the sensitivity of pheromone for ants is introduced in the model. |
---|---|
ISSN: | 2331-8422 |