Loading…
Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors
Nonreciprocal charge transport phenomena are studied theoretically for two-dimensional noncentrosymmetric superconductors under an external magnetic field \(B\). Rashba superconductors, surface superconductivity on the surface of three-dimensional topological insulators, and transition metal dichalc...
Saved in:
Published in: | arXiv.org 2018-05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hoshino, Shintaro Wakatsuki, Ryohei Hamamoto, Keita Nagaosa, Naoto |
description | Nonreciprocal charge transport phenomena are studied theoretically for two-dimensional noncentrosymmetric superconductors under an external magnetic field \(B\). Rashba superconductors, surface superconductivity on the surface of three-dimensional topological insulators, and transition metal dichalcogenides (TMD) are representative systems, and the current-voltage \(I\)-\(V\) characteristics, i.e., \(V=V(I)\), for each of them is analyzed. \(V(I)\) can be expanded with respect to the current \(I\) as \(V(I)= \sum_{j=1,\infty} a_j(B,T) I^j\), and the \((B,T)\)-dependence of \(a_j\) depends on the mechanism of the charge transport. Above the mean field transition temperature \(T_0\), the fluctuation of the superconducting order parameter gives the additional conductivity, i.e., paraconductivity. Extending the analysis to the nonlinear response, we obtain the nonreciprocal charge transport expressed by \(a_2(B,T) = a_1(T) \gamma(T) B\), where \(\gamma\) converges to a finite value at \(T=T_0\). Below \(T_0\), the vortex motion is relevant to the voltage drop, and the dependence of \(a_j\) on \(B,T\) is different depending on the system and mechanisms. For the superconductors under the in-plane magnetic field, the Kosterlitz-Thouless (KT) transition occurs at \(T_{\rm KT}\). In this case \(\gamma\) has the characteristic temperature dependences such as \(\gamma \sim (T-T_{\rm KT})^{-3/2}\) near \(T_{\rm KT}\). On the other hand, for TMD with out-plane magnetic field, the KT transition is gone, and there are two possible mechanisms for the nonreciprocal response. One is the anisotropy of the damping constant for the motion of the vortex. In this case, \(a_1(B) \sim B\) and \(a_2(B) \sim B^2\). The other one is the ratchet potential acting on the vortex motion, which gives \(a_1(B) \sim B\) and \(a_2(B) \sim B\). Based on these results, we propose the experiments to identify the mechanism of the nonreciprocal charge transport. |
doi_str_mv | 10.48550/arxiv.1805.05735 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073257454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073257454</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-2abdfa3855a5054cdfa0877fe16a924ff115f1e6c1a93e30c59d04fc3733222f3</originalsourceid><addsrcrecordid>eNotzktLxDAUBeAgCA7j_AB3Bdcdk3tzm3Ypgy8YdNP9ENNEM0yTmqQ-_r0FXR0OHA4fY1eCb2VLxG90-vafW9Fy2nJSSGdsBYiibiXABdvkfOScQ6OACFesf44hWeOnFI0-VeZdpzdblaRDnmIqlQ9V-Yr14Ecbso9h2YQYjA0lxfwzjrYkb6o8TzaZGIbZlJjyJTt3-pTt5j_XrL-_63eP9f7l4Wl3u681gaxBvw5O44LWxEmapfBWKWdFozuQzglBTtjGCN2hRW6oG7h0BhUiADhcs-u_2wX_MdtcDsc4p4WYD8AVAilJEn8BHtZUSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073257454</pqid></control><display><type>article</type><title>Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors</title><source>Publicly Available Content Database</source><creator>Hoshino, Shintaro ; Wakatsuki, Ryohei ; Hamamoto, Keita ; Nagaosa, Naoto</creator><creatorcontrib>Hoshino, Shintaro ; Wakatsuki, Ryohei ; Hamamoto, Keita ; Nagaosa, Naoto</creatorcontrib><description>Nonreciprocal charge transport phenomena are studied theoretically for two-dimensional noncentrosymmetric superconductors under an external magnetic field \(B\). Rashba superconductors, surface superconductivity on the surface of three-dimensional topological insulators, and transition metal dichalcogenides (TMD) are representative systems, and the current-voltage \(I\)-\(V\) characteristics, i.e., \(V=V(I)\), for each of them is analyzed. \(V(I)\) can be expanded with respect to the current \(I\) as \(V(I)= \sum_{j=1,\infty} a_j(B,T) I^j\), and the \((B,T)\)-dependence of \(a_j\) depends on the mechanism of the charge transport. Above the mean field transition temperature \(T_0\), the fluctuation of the superconducting order parameter gives the additional conductivity, i.e., paraconductivity. Extending the analysis to the nonlinear response, we obtain the nonreciprocal charge transport expressed by \(a_2(B,T) = a_1(T) \gamma(T) B\), where \(\gamma\) converges to a finite value at \(T=T_0\). Below \(T_0\), the vortex motion is relevant to the voltage drop, and the dependence of \(a_j\) on \(B,T\) is different depending on the system and mechanisms. For the superconductors under the in-plane magnetic field, the Kosterlitz-Thouless (KT) transition occurs at \(T_{\rm KT}\). In this case \(\gamma\) has the characteristic temperature dependences such as \(\gamma \sim (T-T_{\rm KT})^{-3/2}\) near \(T_{\rm KT}\). On the other hand, for TMD with out-plane magnetic field, the KT transition is gone, and there are two possible mechanisms for the nonreciprocal response. One is the anisotropy of the damping constant for the motion of the vortex. In this case, \(a_1(B) \sim B\) and \(a_2(B) \sim B^2\). The other one is the ratchet potential acting on the vortex motion, which gives \(a_1(B) \sim B\) and \(a_2(B) \sim B\). Based on these results, we propose the experiments to identify the mechanism of the nonreciprocal charge transport.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1805.05735</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Charge transport ; Crystals ; Current voltage characteristics ; Damping ; Dependence ; Electric potential ; Magnetic fields ; Nonlinear analysis ; Nonlinear response ; Order parameters ; Superconductivity ; Topological insulators ; Transition metal compounds ; Transition temperature ; Transport phenomena ; Variation ; Voltage drop ; Vortices</subject><ispartof>arXiv.org, 2018-05</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073257454?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,27908,36995,44573</link.rule.ids></links><search><creatorcontrib>Hoshino, Shintaro</creatorcontrib><creatorcontrib>Wakatsuki, Ryohei</creatorcontrib><creatorcontrib>Hamamoto, Keita</creatorcontrib><creatorcontrib>Nagaosa, Naoto</creatorcontrib><title>Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors</title><title>arXiv.org</title><description>Nonreciprocal charge transport phenomena are studied theoretically for two-dimensional noncentrosymmetric superconductors under an external magnetic field \(B\). Rashba superconductors, surface superconductivity on the surface of three-dimensional topological insulators, and transition metal dichalcogenides (TMD) are representative systems, and the current-voltage \(I\)-\(V\) characteristics, i.e., \(V=V(I)\), for each of them is analyzed. \(V(I)\) can be expanded with respect to the current \(I\) as \(V(I)= \sum_{j=1,\infty} a_j(B,T) I^j\), and the \((B,T)\)-dependence of \(a_j\) depends on the mechanism of the charge transport. Above the mean field transition temperature \(T_0\), the fluctuation of the superconducting order parameter gives the additional conductivity, i.e., paraconductivity. Extending the analysis to the nonlinear response, we obtain the nonreciprocal charge transport expressed by \(a_2(B,T) = a_1(T) \gamma(T) B\), where \(\gamma\) converges to a finite value at \(T=T_0\). Below \(T_0\), the vortex motion is relevant to the voltage drop, and the dependence of \(a_j\) on \(B,T\) is different depending on the system and mechanisms. For the superconductors under the in-plane magnetic field, the Kosterlitz-Thouless (KT) transition occurs at \(T_{\rm KT}\). In this case \(\gamma\) has the characteristic temperature dependences such as \(\gamma \sim (T-T_{\rm KT})^{-3/2}\) near \(T_{\rm KT}\). On the other hand, for TMD with out-plane magnetic field, the KT transition is gone, and there are two possible mechanisms for the nonreciprocal response. One is the anisotropy of the damping constant for the motion of the vortex. In this case, \(a_1(B) \sim B\) and \(a_2(B) \sim B^2\). The other one is the ratchet potential acting on the vortex motion, which gives \(a_1(B) \sim B\) and \(a_2(B) \sim B\). Based on these results, we propose the experiments to identify the mechanism of the nonreciprocal charge transport.</description><subject>Anisotropy</subject><subject>Charge transport</subject><subject>Crystals</subject><subject>Current voltage characteristics</subject><subject>Damping</subject><subject>Dependence</subject><subject>Electric potential</subject><subject>Magnetic fields</subject><subject>Nonlinear analysis</subject><subject>Nonlinear response</subject><subject>Order parameters</subject><subject>Superconductivity</subject><subject>Topological insulators</subject><subject>Transition metal compounds</subject><subject>Transition temperature</subject><subject>Transport phenomena</subject><subject>Variation</subject><subject>Voltage drop</subject><subject>Vortices</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzktLxDAUBeAgCA7j_AB3Bdcdk3tzm3Ypgy8YdNP9ENNEM0yTmqQ-_r0FXR0OHA4fY1eCb2VLxG90-vafW9Fy2nJSSGdsBYiibiXABdvkfOScQ6OACFesf44hWeOnFI0-VeZdpzdblaRDnmIqlQ9V-Yr14Ecbso9h2YQYjA0lxfwzjrYkb6o8TzaZGIbZlJjyJTt3-pTt5j_XrL-_63eP9f7l4Wl3u681gaxBvw5O44LWxEmapfBWKWdFozuQzglBTtjGCN2hRW6oG7h0BhUiADhcs-u_2wX_MdtcDsc4p4WYD8AVAilJEn8BHtZUSw</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Hoshino, Shintaro</creator><creator>Wakatsuki, Ryohei</creator><creator>Hamamoto, Keita</creator><creator>Nagaosa, Naoto</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180515</creationdate><title>Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors</title><author>Hoshino, Shintaro ; Wakatsuki, Ryohei ; Hamamoto, Keita ; Nagaosa, Naoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-2abdfa3855a5054cdfa0877fe16a924ff115f1e6c1a93e30c59d04fc3733222f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Charge transport</topic><topic>Crystals</topic><topic>Current voltage characteristics</topic><topic>Damping</topic><topic>Dependence</topic><topic>Electric potential</topic><topic>Magnetic fields</topic><topic>Nonlinear analysis</topic><topic>Nonlinear response</topic><topic>Order parameters</topic><topic>Superconductivity</topic><topic>Topological insulators</topic><topic>Transition metal compounds</topic><topic>Transition temperature</topic><topic>Transport phenomena</topic><topic>Variation</topic><topic>Voltage drop</topic><topic>Vortices</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoshino, Shintaro</creatorcontrib><creatorcontrib>Wakatsuki, Ryohei</creatorcontrib><creatorcontrib>Hamamoto, Keita</creatorcontrib><creatorcontrib>Nagaosa, Naoto</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoshino, Shintaro</au><au>Wakatsuki, Ryohei</au><au>Hamamoto, Keita</au><au>Nagaosa, Naoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors</atitle><jtitle>arXiv.org</jtitle><date>2018-05-15</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Nonreciprocal charge transport phenomena are studied theoretically for two-dimensional noncentrosymmetric superconductors under an external magnetic field \(B\). Rashba superconductors, surface superconductivity on the surface of three-dimensional topological insulators, and transition metal dichalcogenides (TMD) are representative systems, and the current-voltage \(I\)-\(V\) characteristics, i.e., \(V=V(I)\), for each of them is analyzed. \(V(I)\) can be expanded with respect to the current \(I\) as \(V(I)= \sum_{j=1,\infty} a_j(B,T) I^j\), and the \((B,T)\)-dependence of \(a_j\) depends on the mechanism of the charge transport. Above the mean field transition temperature \(T_0\), the fluctuation of the superconducting order parameter gives the additional conductivity, i.e., paraconductivity. Extending the analysis to the nonlinear response, we obtain the nonreciprocal charge transport expressed by \(a_2(B,T) = a_1(T) \gamma(T) B\), where \(\gamma\) converges to a finite value at \(T=T_0\). Below \(T_0\), the vortex motion is relevant to the voltage drop, and the dependence of \(a_j\) on \(B,T\) is different depending on the system and mechanisms. For the superconductors under the in-plane magnetic field, the Kosterlitz-Thouless (KT) transition occurs at \(T_{\rm KT}\). In this case \(\gamma\) has the characteristic temperature dependences such as \(\gamma \sim (T-T_{\rm KT})^{-3/2}\) near \(T_{\rm KT}\). On the other hand, for TMD with out-plane magnetic field, the KT transition is gone, and there are two possible mechanisms for the nonreciprocal response. One is the anisotropy of the damping constant for the motion of the vortex. In this case, \(a_1(B) \sim B\) and \(a_2(B) \sim B^2\). The other one is the ratchet potential acting on the vortex motion, which gives \(a_1(B) \sim B\) and \(a_2(B) \sim B\). Based on these results, we propose the experiments to identify the mechanism of the nonreciprocal charge transport.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1805.05735</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073257454 |
source | Publicly Available Content Database |
subjects | Anisotropy Charge transport Crystals Current voltage characteristics Damping Dependence Electric potential Magnetic fields Nonlinear analysis Nonlinear response Order parameters Superconductivity Topological insulators Transition metal compounds Transition temperature Transport phenomena Variation Voltage drop Vortices |
title | Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonreciprocal%20charge%20transport%20in%20two-dimensional%20noncentrosymmetric%20superconductors&rft.jtitle=arXiv.org&rft.au=Hoshino,%20Shintaro&rft.date=2018-05-15&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1805.05735&rft_dat=%3Cproquest%3E2073257454%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-2abdfa3855a5054cdfa0877fe16a924ff115f1e6c1a93e30c59d04fc3733222f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073257454&rft_id=info:pmid/&rfr_iscdi=true |