Loading…

Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors

Nonreciprocal charge transport phenomena are studied theoretically for two-dimensional noncentrosymmetric superconductors under an external magnetic field \(B\). Rashba superconductors, surface superconductivity on the surface of three-dimensional topological insulators, and transition metal dichalc...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-05
Main Authors: Hoshino, Shintaro, Wakatsuki, Ryohei, Hamamoto, Keita, Nagaosa, Naoto
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hoshino, Shintaro
Wakatsuki, Ryohei
Hamamoto, Keita
Nagaosa, Naoto
description Nonreciprocal charge transport phenomena are studied theoretically for two-dimensional noncentrosymmetric superconductors under an external magnetic field \(B\). Rashba superconductors, surface superconductivity on the surface of three-dimensional topological insulators, and transition metal dichalcogenides (TMD) are representative systems, and the current-voltage \(I\)-\(V\) characteristics, i.e., \(V=V(I)\), for each of them is analyzed. \(V(I)\) can be expanded with respect to the current \(I\) as \(V(I)= \sum_{j=1,\infty} a_j(B,T) I^j\), and the \((B,T)\)-dependence of \(a_j\) depends on the mechanism of the charge transport. Above the mean field transition temperature \(T_0\), the fluctuation of the superconducting order parameter gives the additional conductivity, i.e., paraconductivity. Extending the analysis to the nonlinear response, we obtain the nonreciprocal charge transport expressed by \(a_2(B,T) = a_1(T) \gamma(T) B\), where \(\gamma\) converges to a finite value at \(T=T_0\). Below \(T_0\), the vortex motion is relevant to the voltage drop, and the dependence of \(a_j\) on \(B,T\) is different depending on the system and mechanisms. For the superconductors under the in-plane magnetic field, the Kosterlitz-Thouless (KT) transition occurs at \(T_{\rm KT}\). In this case \(\gamma\) has the characteristic temperature dependences such as \(\gamma \sim (T-T_{\rm KT})^{-3/2}\) near \(T_{\rm KT}\). On the other hand, for TMD with out-plane magnetic field, the KT transition is gone, and there are two possible mechanisms for the nonreciprocal response. One is the anisotropy of the damping constant for the motion of the vortex. In this case, \(a_1(B) \sim B\) and \(a_2(B) \sim B^2\). The other one is the ratchet potential acting on the vortex motion, which gives \(a_1(B) \sim B\) and \(a_2(B) \sim B\). Based on these results, we propose the experiments to identify the mechanism of the nonreciprocal charge transport.
doi_str_mv 10.48550/arxiv.1805.05735
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073257454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073257454</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-2abdfa3855a5054cdfa0877fe16a924ff115f1e6c1a93e30c59d04fc3733222f3</originalsourceid><addsrcrecordid>eNotzktLxDAUBeAgCA7j_AB3Bdcdk3tzm3Ypgy8YdNP9ENNEM0yTmqQ-_r0FXR0OHA4fY1eCb2VLxG90-vafW9Fy2nJSSGdsBYiibiXABdvkfOScQ6OACFesf44hWeOnFI0-VeZdpzdblaRDnmIqlQ9V-Yr14Ecbso9h2YQYjA0lxfwzjrYkb6o8TzaZGIbZlJjyJTt3-pTt5j_XrL-_63eP9f7l4Wl3u681gaxBvw5O44LWxEmapfBWKWdFozuQzglBTtjGCN2hRW6oG7h0BhUiADhcs-u_2wX_MdtcDsc4p4WYD8AVAilJEn8BHtZUSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073257454</pqid></control><display><type>article</type><title>Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors</title><source>Publicly Available Content Database</source><creator>Hoshino, Shintaro ; Wakatsuki, Ryohei ; Hamamoto, Keita ; Nagaosa, Naoto</creator><creatorcontrib>Hoshino, Shintaro ; Wakatsuki, Ryohei ; Hamamoto, Keita ; Nagaosa, Naoto</creatorcontrib><description>Nonreciprocal charge transport phenomena are studied theoretically for two-dimensional noncentrosymmetric superconductors under an external magnetic field \(B\). Rashba superconductors, surface superconductivity on the surface of three-dimensional topological insulators, and transition metal dichalcogenides (TMD) are representative systems, and the current-voltage \(I\)-\(V\) characteristics, i.e., \(V=V(I)\), for each of them is analyzed. \(V(I)\) can be expanded with respect to the current \(I\) as \(V(I)= \sum_{j=1,\infty} a_j(B,T) I^j\), and the \((B,T)\)-dependence of \(a_j\) depends on the mechanism of the charge transport. Above the mean field transition temperature \(T_0\), the fluctuation of the superconducting order parameter gives the additional conductivity, i.e., paraconductivity. Extending the analysis to the nonlinear response, we obtain the nonreciprocal charge transport expressed by \(a_2(B,T) = a_1(T) \gamma(T) B\), where \(\gamma\) converges to a finite value at \(T=T_0\). Below \(T_0\), the vortex motion is relevant to the voltage drop, and the dependence of \(a_j\) on \(B,T\) is different depending on the system and mechanisms. For the superconductors under the in-plane magnetic field, the Kosterlitz-Thouless (KT) transition occurs at \(T_{\rm KT}\). In this case \(\gamma\) has the characteristic temperature dependences such as \(\gamma \sim (T-T_{\rm KT})^{-3/2}\) near \(T_{\rm KT}\). On the other hand, for TMD with out-plane magnetic field, the KT transition is gone, and there are two possible mechanisms for the nonreciprocal response. One is the anisotropy of the damping constant for the motion of the vortex. In this case, \(a_1(B) \sim B\) and \(a_2(B) \sim B^2\). The other one is the ratchet potential acting on the vortex motion, which gives \(a_1(B) \sim B\) and \(a_2(B) \sim B\). Based on these results, we propose the experiments to identify the mechanism of the nonreciprocal charge transport.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1805.05735</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Charge transport ; Crystals ; Current voltage characteristics ; Damping ; Dependence ; Electric potential ; Magnetic fields ; Nonlinear analysis ; Nonlinear response ; Order parameters ; Superconductivity ; Topological insulators ; Transition metal compounds ; Transition temperature ; Transport phenomena ; Variation ; Voltage drop ; Vortices</subject><ispartof>arXiv.org, 2018-05</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073257454?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,27908,36995,44573</link.rule.ids></links><search><creatorcontrib>Hoshino, Shintaro</creatorcontrib><creatorcontrib>Wakatsuki, Ryohei</creatorcontrib><creatorcontrib>Hamamoto, Keita</creatorcontrib><creatorcontrib>Nagaosa, Naoto</creatorcontrib><title>Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors</title><title>arXiv.org</title><description>Nonreciprocal charge transport phenomena are studied theoretically for two-dimensional noncentrosymmetric superconductors under an external magnetic field \(B\). Rashba superconductors, surface superconductivity on the surface of three-dimensional topological insulators, and transition metal dichalcogenides (TMD) are representative systems, and the current-voltage \(I\)-\(V\) characteristics, i.e., \(V=V(I)\), for each of them is analyzed. \(V(I)\) can be expanded with respect to the current \(I\) as \(V(I)= \sum_{j=1,\infty} a_j(B,T) I^j\), and the \((B,T)\)-dependence of \(a_j\) depends on the mechanism of the charge transport. Above the mean field transition temperature \(T_0\), the fluctuation of the superconducting order parameter gives the additional conductivity, i.e., paraconductivity. Extending the analysis to the nonlinear response, we obtain the nonreciprocal charge transport expressed by \(a_2(B,T) = a_1(T) \gamma(T) B\), where \(\gamma\) converges to a finite value at \(T=T_0\). Below \(T_0\), the vortex motion is relevant to the voltage drop, and the dependence of \(a_j\) on \(B,T\) is different depending on the system and mechanisms. For the superconductors under the in-plane magnetic field, the Kosterlitz-Thouless (KT) transition occurs at \(T_{\rm KT}\). In this case \(\gamma\) has the characteristic temperature dependences such as \(\gamma \sim (T-T_{\rm KT})^{-3/2}\) near \(T_{\rm KT}\). On the other hand, for TMD with out-plane magnetic field, the KT transition is gone, and there are two possible mechanisms for the nonreciprocal response. One is the anisotropy of the damping constant for the motion of the vortex. In this case, \(a_1(B) \sim B\) and \(a_2(B) \sim B^2\). The other one is the ratchet potential acting on the vortex motion, which gives \(a_1(B) \sim B\) and \(a_2(B) \sim B\). Based on these results, we propose the experiments to identify the mechanism of the nonreciprocal charge transport.</description><subject>Anisotropy</subject><subject>Charge transport</subject><subject>Crystals</subject><subject>Current voltage characteristics</subject><subject>Damping</subject><subject>Dependence</subject><subject>Electric potential</subject><subject>Magnetic fields</subject><subject>Nonlinear analysis</subject><subject>Nonlinear response</subject><subject>Order parameters</subject><subject>Superconductivity</subject><subject>Topological insulators</subject><subject>Transition metal compounds</subject><subject>Transition temperature</subject><subject>Transport phenomena</subject><subject>Variation</subject><subject>Voltage drop</subject><subject>Vortices</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzktLxDAUBeAgCA7j_AB3Bdcdk3tzm3Ypgy8YdNP9ENNEM0yTmqQ-_r0FXR0OHA4fY1eCb2VLxG90-vafW9Fy2nJSSGdsBYiibiXABdvkfOScQ6OACFesf44hWeOnFI0-VeZdpzdblaRDnmIqlQ9V-Yr14Ecbso9h2YQYjA0lxfwzjrYkb6o8TzaZGIbZlJjyJTt3-pTt5j_XrL-_63eP9f7l4Wl3u681gaxBvw5O44LWxEmapfBWKWdFozuQzglBTtjGCN2hRW6oG7h0BhUiADhcs-u_2wX_MdtcDsc4p4WYD8AVAilJEn8BHtZUSw</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Hoshino, Shintaro</creator><creator>Wakatsuki, Ryohei</creator><creator>Hamamoto, Keita</creator><creator>Nagaosa, Naoto</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180515</creationdate><title>Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors</title><author>Hoshino, Shintaro ; Wakatsuki, Ryohei ; Hamamoto, Keita ; Nagaosa, Naoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-2abdfa3855a5054cdfa0877fe16a924ff115f1e6c1a93e30c59d04fc3733222f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Charge transport</topic><topic>Crystals</topic><topic>Current voltage characteristics</topic><topic>Damping</topic><topic>Dependence</topic><topic>Electric potential</topic><topic>Magnetic fields</topic><topic>Nonlinear analysis</topic><topic>Nonlinear response</topic><topic>Order parameters</topic><topic>Superconductivity</topic><topic>Topological insulators</topic><topic>Transition metal compounds</topic><topic>Transition temperature</topic><topic>Transport phenomena</topic><topic>Variation</topic><topic>Voltage drop</topic><topic>Vortices</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoshino, Shintaro</creatorcontrib><creatorcontrib>Wakatsuki, Ryohei</creatorcontrib><creatorcontrib>Hamamoto, Keita</creatorcontrib><creatorcontrib>Nagaosa, Naoto</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoshino, Shintaro</au><au>Wakatsuki, Ryohei</au><au>Hamamoto, Keita</au><au>Nagaosa, Naoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors</atitle><jtitle>arXiv.org</jtitle><date>2018-05-15</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Nonreciprocal charge transport phenomena are studied theoretically for two-dimensional noncentrosymmetric superconductors under an external magnetic field \(B\). Rashba superconductors, surface superconductivity on the surface of three-dimensional topological insulators, and transition metal dichalcogenides (TMD) are representative systems, and the current-voltage \(I\)-\(V\) characteristics, i.e., \(V=V(I)\), for each of them is analyzed. \(V(I)\) can be expanded with respect to the current \(I\) as \(V(I)= \sum_{j=1,\infty} a_j(B,T) I^j\), and the \((B,T)\)-dependence of \(a_j\) depends on the mechanism of the charge transport. Above the mean field transition temperature \(T_0\), the fluctuation of the superconducting order parameter gives the additional conductivity, i.e., paraconductivity. Extending the analysis to the nonlinear response, we obtain the nonreciprocal charge transport expressed by \(a_2(B,T) = a_1(T) \gamma(T) B\), where \(\gamma\) converges to a finite value at \(T=T_0\). Below \(T_0\), the vortex motion is relevant to the voltage drop, and the dependence of \(a_j\) on \(B,T\) is different depending on the system and mechanisms. For the superconductors under the in-plane magnetic field, the Kosterlitz-Thouless (KT) transition occurs at \(T_{\rm KT}\). In this case \(\gamma\) has the characteristic temperature dependences such as \(\gamma \sim (T-T_{\rm KT})^{-3/2}\) near \(T_{\rm KT}\). On the other hand, for TMD with out-plane magnetic field, the KT transition is gone, and there are two possible mechanisms for the nonreciprocal response. One is the anisotropy of the damping constant for the motion of the vortex. In this case, \(a_1(B) \sim B\) and \(a_2(B) \sim B^2\). The other one is the ratchet potential acting on the vortex motion, which gives \(a_1(B) \sim B\) and \(a_2(B) \sim B\). Based on these results, we propose the experiments to identify the mechanism of the nonreciprocal charge transport.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1805.05735</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073257454
source Publicly Available Content Database
subjects Anisotropy
Charge transport
Crystals
Current voltage characteristics
Damping
Dependence
Electric potential
Magnetic fields
Nonlinear analysis
Nonlinear response
Order parameters
Superconductivity
Topological insulators
Transition metal compounds
Transition temperature
Transport phenomena
Variation
Voltage drop
Vortices
title Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonreciprocal%20charge%20transport%20in%20two-dimensional%20noncentrosymmetric%20superconductors&rft.jtitle=arXiv.org&rft.au=Hoshino,%20Shintaro&rft.date=2018-05-15&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1805.05735&rft_dat=%3Cproquest%3E2073257454%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-2abdfa3855a5054cdfa0877fe16a924ff115f1e6c1a93e30c59d04fc3733222f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073257454&rft_id=info:pmid/&rfr_iscdi=true