Loading…

Stark Tuning of Single-Photon Emitters in Hexagonal Boron Nitride

Single-photon emitters play an essential role in quantum technologies, including quantum computing and quantum communications. Atomic defects in hexagonal boron nitride (h-BN) have recently emerged as new room-temperature single-photon emitters in solid-state systems, but the development of scalable...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-07
Main Authors: Noh, Gichang, Choi, Daebok, Jin-Hun, Kim, Dong-Gil Im, Yoon-Ho, Kim, Seo, Hosung, Lee, Jieun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Noh, Gichang
Choi, Daebok
Jin-Hun, Kim
Dong-Gil Im
Yoon-Ho, Kim
Seo, Hosung
Lee, Jieun
description Single-photon emitters play an essential role in quantum technologies, including quantum computing and quantum communications. Atomic defects in hexagonal boron nitride (h-BN) have recently emerged as new room-temperature single-photon emitters in solid-state systems, but the development of scalable and tunable h-BN single-photon emitters requires external methods that can control the emission energy of individual defects. Here, by fabricating van der Waals heterostructures of h-BN and graphene, we demonstrate the electrical control of single-photon emission from atomic defects in h-BN via the Stark effect. By applying an out-of-plane electric field through graphene gates, we observed Stark shifts as large as 5.4 nm per GV/m. The Stark shift generated upon a vertical electric field suggests the existence of out-of-plane dipole moments associated with atomic defect emitters, which is supported by first-principles theoretical calculations. Furthermore, we found field-induced discrete modification and stabilization of emission intensity, which were reversibly controllable with an external electric field.
doi_str_mv 10.48550/arxiv.1807.04945
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073368036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073368036</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-f6699b0854293a9b6a019480ee63534b1e473390f1f7916ca46b38edb21d33913</originalsourceid><addsrcrecordid>eNotjlFLwzAUhYMgOOZ-wN4CPrfe5CZp8jjHdMLQwfo-UpvOzNpoksp-vgV9-uAcvsMhZMmgFFpKuLfx4n9KpqEqQRghr8iMI7JCC85vyCKlMwBwVXEpcUZWh2zjB63HwQ8nGjp6mNi7Yv8echjo5tPn7GKifqBbd7GnMNiePoQ4dS8-R9-6W3Ld2T65xT_npH7c1OttsXt9el6vdoWVXBWdUsY0oKXgBq1plAVmhAbnFEoUDXOiQjTQsa4yTL1ZoRrUrm04a6ec4Zzc_c1-xfA9upSP5zDG6U06cphUpQEV_gIS-0lq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073368036</pqid></control><display><type>article</type><title>Stark Tuning of Single-Photon Emitters in Hexagonal Boron Nitride</title><source>Publicly Available Content (ProQuest)</source><creator>Noh, Gichang ; Choi, Daebok ; Jin-Hun, Kim ; Dong-Gil Im ; Yoon-Ho, Kim ; Seo, Hosung ; Lee, Jieun</creator><creatorcontrib>Noh, Gichang ; Choi, Daebok ; Jin-Hun, Kim ; Dong-Gil Im ; Yoon-Ho, Kim ; Seo, Hosung ; Lee, Jieun</creatorcontrib><description>Single-photon emitters play an essential role in quantum technologies, including quantum computing and quantum communications. Atomic defects in hexagonal boron nitride (h-BN) have recently emerged as new room-temperature single-photon emitters in solid-state systems, but the development of scalable and tunable h-BN single-photon emitters requires external methods that can control the emission energy of individual defects. Here, by fabricating van der Waals heterostructures of h-BN and graphene, we demonstrate the electrical control of single-photon emission from atomic defects in h-BN via the Stark effect. By applying an out-of-plane electric field through graphene gates, we observed Stark shifts as large as 5.4 nm per GV/m. The Stark shift generated upon a vertical electric field suggests the existence of out-of-plane dipole moments associated with atomic defect emitters, which is supported by first-principles theoretical calculations. Furthermore, we found field-induced discrete modification and stabilization of emission intensity, which were reversibly controllable with an external electric field.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1807.04945</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boron nitride ; Control methods ; Defects ; Dipole moments ; Electric fields ; Emissions control ; Emitters ; First principles ; Graphene ; Heterostructures ; Photon emission ; Quantum computing ; Stability ; Stark effect</subject><ispartof>arXiv.org, 2018-07</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073368036?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Noh, Gichang</creatorcontrib><creatorcontrib>Choi, Daebok</creatorcontrib><creatorcontrib>Jin-Hun, Kim</creatorcontrib><creatorcontrib>Dong-Gil Im</creatorcontrib><creatorcontrib>Yoon-Ho, Kim</creatorcontrib><creatorcontrib>Seo, Hosung</creatorcontrib><creatorcontrib>Lee, Jieun</creatorcontrib><title>Stark Tuning of Single-Photon Emitters in Hexagonal Boron Nitride</title><title>arXiv.org</title><description>Single-photon emitters play an essential role in quantum technologies, including quantum computing and quantum communications. Atomic defects in hexagonal boron nitride (h-BN) have recently emerged as new room-temperature single-photon emitters in solid-state systems, but the development of scalable and tunable h-BN single-photon emitters requires external methods that can control the emission energy of individual defects. Here, by fabricating van der Waals heterostructures of h-BN and graphene, we demonstrate the electrical control of single-photon emission from atomic defects in h-BN via the Stark effect. By applying an out-of-plane electric field through graphene gates, we observed Stark shifts as large as 5.4 nm per GV/m. The Stark shift generated upon a vertical electric field suggests the existence of out-of-plane dipole moments associated with atomic defect emitters, which is supported by first-principles theoretical calculations. Furthermore, we found field-induced discrete modification and stabilization of emission intensity, which were reversibly controllable with an external electric field.</description><subject>Boron nitride</subject><subject>Control methods</subject><subject>Defects</subject><subject>Dipole moments</subject><subject>Electric fields</subject><subject>Emissions control</subject><subject>Emitters</subject><subject>First principles</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Photon emission</subject><subject>Quantum computing</subject><subject>Stability</subject><subject>Stark effect</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjlFLwzAUhYMgOOZ-wN4CPrfe5CZp8jjHdMLQwfo-UpvOzNpoksp-vgV9-uAcvsMhZMmgFFpKuLfx4n9KpqEqQRghr8iMI7JCC85vyCKlMwBwVXEpcUZWh2zjB63HwQ8nGjp6mNi7Yv8echjo5tPn7GKifqBbd7GnMNiePoQ4dS8-R9-6W3Ld2T65xT_npH7c1OttsXt9el6vdoWVXBWdUsY0oKXgBq1plAVmhAbnFEoUDXOiQjTQsa4yTL1ZoRrUrm04a6ec4Zzc_c1-xfA9upSP5zDG6U06cphUpQEV_gIS-0lq</recordid><startdate>20180713</startdate><enddate>20180713</enddate><creator>Noh, Gichang</creator><creator>Choi, Daebok</creator><creator>Jin-Hun, Kim</creator><creator>Dong-Gil Im</creator><creator>Yoon-Ho, Kim</creator><creator>Seo, Hosung</creator><creator>Lee, Jieun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180713</creationdate><title>Stark Tuning of Single-Photon Emitters in Hexagonal Boron Nitride</title><author>Noh, Gichang ; Choi, Daebok ; Jin-Hun, Kim ; Dong-Gil Im ; Yoon-Ho, Kim ; Seo, Hosung ; Lee, Jieun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-f6699b0854293a9b6a019480ee63534b1e473390f1f7916ca46b38edb21d33913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boron nitride</topic><topic>Control methods</topic><topic>Defects</topic><topic>Dipole moments</topic><topic>Electric fields</topic><topic>Emissions control</topic><topic>Emitters</topic><topic>First principles</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Photon emission</topic><topic>Quantum computing</topic><topic>Stability</topic><topic>Stark effect</topic><toplevel>online_resources</toplevel><creatorcontrib>Noh, Gichang</creatorcontrib><creatorcontrib>Choi, Daebok</creatorcontrib><creatorcontrib>Jin-Hun, Kim</creatorcontrib><creatorcontrib>Dong-Gil Im</creatorcontrib><creatorcontrib>Yoon-Ho, Kim</creatorcontrib><creatorcontrib>Seo, Hosung</creatorcontrib><creatorcontrib>Lee, Jieun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noh, Gichang</au><au>Choi, Daebok</au><au>Jin-Hun, Kim</au><au>Dong-Gil Im</au><au>Yoon-Ho, Kim</au><au>Seo, Hosung</au><au>Lee, Jieun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stark Tuning of Single-Photon Emitters in Hexagonal Boron Nitride</atitle><jtitle>arXiv.org</jtitle><date>2018-07-13</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Single-photon emitters play an essential role in quantum technologies, including quantum computing and quantum communications. Atomic defects in hexagonal boron nitride (h-BN) have recently emerged as new room-temperature single-photon emitters in solid-state systems, but the development of scalable and tunable h-BN single-photon emitters requires external methods that can control the emission energy of individual defects. Here, by fabricating van der Waals heterostructures of h-BN and graphene, we demonstrate the electrical control of single-photon emission from atomic defects in h-BN via the Stark effect. By applying an out-of-plane electric field through graphene gates, we observed Stark shifts as large as 5.4 nm per GV/m. The Stark shift generated upon a vertical electric field suggests the existence of out-of-plane dipole moments associated with atomic defect emitters, which is supported by first-principles theoretical calculations. Furthermore, we found field-induced discrete modification and stabilization of emission intensity, which were reversibly controllable with an external electric field.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1807.04945</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073368036
source Publicly Available Content (ProQuest)
subjects Boron nitride
Control methods
Defects
Dipole moments
Electric fields
Emissions control
Emitters
First principles
Graphene
Heterostructures
Photon emission
Quantum computing
Stability
Stark effect
title Stark Tuning of Single-Photon Emitters in Hexagonal Boron Nitride
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stark%20Tuning%20of%20Single-Photon%20Emitters%20in%20Hexagonal%20Boron%20Nitride&rft.jtitle=arXiv.org&rft.au=Noh,%20Gichang&rft.date=2018-07-13&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1807.04945&rft_dat=%3Cproquest%3E2073368036%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-f6699b0854293a9b6a019480ee63534b1e473390f1f7916ca46b38edb21d33913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073368036&rft_id=info:pmid/&rfr_iscdi=true