Loading…
Black hole formation via gas-dynamical processes
Understanding the formation of earliest supermassive black holes is a question of prime astrophysical interest. In this chapter, we focus on the formation of massive black holes via gas dynamical processes. The necessary requirement for this mechanism are large inflow rates of about 0.1 solar mass p...
Saved in:
Published in: | arXiv.org 2018-12 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding the formation of earliest supermassive black holes is a question of prime astrophysical interest. In this chapter, we focus on the formation of massive black holes via gas dynamical processes. The necessary requirement for this mechanism are large inflow rates of about 0.1 solar mass per year. We discuss how to obtain such inflow rates via an isothermal collapse in the presence of atomic hydrogen cooling, and the outcome of such a collapse from three dimensional cosmological simulations in subsection 2.2. Alternatives to an isothermal direct collapse are discussed in subsection 3 which include trace amounts of metals and/or molecular hydrogen. In the end, we briefly discuss future perspectives and potential detection of massive black hole seeds via upcoming missions. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1807.06337 |