Loading…

Identifying correlations between LIGO's astronomical range and auxiliary sensors using lasso regression

The range to which the Laser Interferometer Gravitational-Wave Observatory (LIGO) can observe astrophysical systems varies over time, limited by noise in the instruments and their environments. Identifying and removing the sources of noise that limit LIGO's range enables higher signal-to-noise...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-10
Main Authors: Walker, Marissa, Agnew, Alfonso F, Bidler, Jeffrey, Lundgren, Andrew, Macedo, Alexandra, Macleod, Duncan, Massinger, T J, Patane, Oliver, Smith, Joshua R
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Walker, Marissa
Agnew, Alfonso F
Bidler, Jeffrey
Lundgren, Andrew
Macedo, Alexandra
Macleod, Duncan
Massinger, T J
Patane, Oliver
Smith, Joshua R
description The range to which the Laser Interferometer Gravitational-Wave Observatory (LIGO) can observe astrophysical systems varies over time, limited by noise in the instruments and their environments. Identifying and removing the sources of noise that limit LIGO's range enables higher signal-to-noise observations and increases the number of observations. The LIGO observatories are continuously monitored by hundreds of thousands of auxiliary channels that may contain information about these noise sources. This paper describes an algorithm that uses linear regression, namely lasso (least absolute shrinkage and selection operator) regression, to analyze all of these channels and identify a small subset of them that can be used to reconstruct variations in LIGO's astrophysical range. Exemplary results of the application of this method to three different periods of LIGO Livingston data are presented, along with computational performance and current limitations.
doi_str_mv 10.48550/arxiv.1807.02592
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073405319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073405319</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-c35b3d20fcfd94c66d6a322d8acf7bdb0aa91fe45ef71f725df6af7467756d723</originalsourceid><addsrcrecordid>eNotz0FLwzAYxvEgCI65D-At4MFTZ5o0SXuUoXMw2GX38bZ5UzJqonlb3b69E3d6br-HP2MPpVhWtdbiGfIpfC_LWtilkLqRN2wmlSqLupLyji2IjkIIaazUWs1Yv3EYx-DPIfa8SznjAGNIkXiL4w9i5NvNevdEHGjMKaaP0MHAM8QeOUTHYTqFIUA-c8JIKROf6I8agCjxjH1Goot3z249DISL687Z_u11v3ovtrv1ZvWyLUDLpuiUbpWTwnfeNVVnjDOgpHQ1dN62rhUATemx0uht6S8JzhvwtjLWauOsVHP2-M9-5vQ1IY2HY5pyvDwepLCqElqVjfoFAotbFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073405319</pqid></control><display><type>article</type><title>Identifying correlations between LIGO's astronomical range and auxiliary sensors using lasso regression</title><source>Publicly Available Content Database</source><creator>Walker, Marissa ; Agnew, Alfonso F ; Bidler, Jeffrey ; Lundgren, Andrew ; Macedo, Alexandra ; Macleod, Duncan ; Massinger, T J ; Patane, Oliver ; Smith, Joshua R</creator><creatorcontrib>Walker, Marissa ; Agnew, Alfonso F ; Bidler, Jeffrey ; Lundgren, Andrew ; Macedo, Alexandra ; Macleod, Duncan ; Massinger, T J ; Patane, Oliver ; Smith, Joshua R</creatorcontrib><description>The range to which the Laser Interferometer Gravitational-Wave Observatory (LIGO) can observe astrophysical systems varies over time, limited by noise in the instruments and their environments. Identifying and removing the sources of noise that limit LIGO's range enables higher signal-to-noise observations and increases the number of observations. The LIGO observatories are continuously monitored by hundreds of thousands of auxiliary channels that may contain information about these noise sources. This paper describes an algorithm that uses linear regression, namely lasso (least absolute shrinkage and selection operator) regression, to analyze all of these channels and identify a small subset of them that can be used to reconstruct variations in LIGO's astrophysical range. Exemplary results of the application of this method to three different periods of LIGO Livingston data are presented, along with computational performance and current limitations.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1807.02592</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Channels ; Gravitational waves ; Noise ; Observatories ; Regression analysis</subject><ispartof>arXiv.org, 2018-10</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073405319?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Walker, Marissa</creatorcontrib><creatorcontrib>Agnew, Alfonso F</creatorcontrib><creatorcontrib>Bidler, Jeffrey</creatorcontrib><creatorcontrib>Lundgren, Andrew</creatorcontrib><creatorcontrib>Macedo, Alexandra</creatorcontrib><creatorcontrib>Macleod, Duncan</creatorcontrib><creatorcontrib>Massinger, T J</creatorcontrib><creatorcontrib>Patane, Oliver</creatorcontrib><creatorcontrib>Smith, Joshua R</creatorcontrib><title>Identifying correlations between LIGO's astronomical range and auxiliary sensors using lasso regression</title><title>arXiv.org</title><description>The range to which the Laser Interferometer Gravitational-Wave Observatory (LIGO) can observe astrophysical systems varies over time, limited by noise in the instruments and their environments. Identifying and removing the sources of noise that limit LIGO's range enables higher signal-to-noise observations and increases the number of observations. The LIGO observatories are continuously monitored by hundreds of thousands of auxiliary channels that may contain information about these noise sources. This paper describes an algorithm that uses linear regression, namely lasso (least absolute shrinkage and selection operator) regression, to analyze all of these channels and identify a small subset of them that can be used to reconstruct variations in LIGO's astrophysical range. Exemplary results of the application of this method to three different periods of LIGO Livingston data are presented, along with computational performance and current limitations.</description><subject>Algorithms</subject><subject>Channels</subject><subject>Gravitational waves</subject><subject>Noise</subject><subject>Observatories</subject><subject>Regression analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotz0FLwzAYxvEgCI65D-At4MFTZ5o0SXuUoXMw2GX38bZ5UzJqonlb3b69E3d6br-HP2MPpVhWtdbiGfIpfC_LWtilkLqRN2wmlSqLupLyji2IjkIIaazUWs1Yv3EYx-DPIfa8SznjAGNIkXiL4w9i5NvNevdEHGjMKaaP0MHAM8QeOUTHYTqFIUA-c8JIKROf6I8agCjxjH1Goot3z249DISL687Z_u11v3ovtrv1ZvWyLUDLpuiUbpWTwnfeNVVnjDOgpHQ1dN62rhUATemx0uht6S8JzhvwtjLWauOsVHP2-M9-5vQ1IY2HY5pyvDwepLCqElqVjfoFAotbFA</recordid><startdate>20181023</startdate><enddate>20181023</enddate><creator>Walker, Marissa</creator><creator>Agnew, Alfonso F</creator><creator>Bidler, Jeffrey</creator><creator>Lundgren, Andrew</creator><creator>Macedo, Alexandra</creator><creator>Macleod, Duncan</creator><creator>Massinger, T J</creator><creator>Patane, Oliver</creator><creator>Smith, Joshua R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181023</creationdate><title>Identifying correlations between LIGO's astronomical range and auxiliary sensors using lasso regression</title><author>Walker, Marissa ; Agnew, Alfonso F ; Bidler, Jeffrey ; Lundgren, Andrew ; Macedo, Alexandra ; Macleod, Duncan ; Massinger, T J ; Patane, Oliver ; Smith, Joshua R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-c35b3d20fcfd94c66d6a322d8acf7bdb0aa91fe45ef71f725df6af7467756d723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Channels</topic><topic>Gravitational waves</topic><topic>Noise</topic><topic>Observatories</topic><topic>Regression analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Walker, Marissa</creatorcontrib><creatorcontrib>Agnew, Alfonso F</creatorcontrib><creatorcontrib>Bidler, Jeffrey</creatorcontrib><creatorcontrib>Lundgren, Andrew</creatorcontrib><creatorcontrib>Macedo, Alexandra</creatorcontrib><creatorcontrib>Macleod, Duncan</creatorcontrib><creatorcontrib>Massinger, T J</creatorcontrib><creatorcontrib>Patane, Oliver</creatorcontrib><creatorcontrib>Smith, Joshua R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walker, Marissa</au><au>Agnew, Alfonso F</au><au>Bidler, Jeffrey</au><au>Lundgren, Andrew</au><au>Macedo, Alexandra</au><au>Macleod, Duncan</au><au>Massinger, T J</au><au>Patane, Oliver</au><au>Smith, Joshua R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying correlations between LIGO's astronomical range and auxiliary sensors using lasso regression</atitle><jtitle>arXiv.org</jtitle><date>2018-10-23</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>The range to which the Laser Interferometer Gravitational-Wave Observatory (LIGO) can observe astrophysical systems varies over time, limited by noise in the instruments and their environments. Identifying and removing the sources of noise that limit LIGO's range enables higher signal-to-noise observations and increases the number of observations. The LIGO observatories are continuously monitored by hundreds of thousands of auxiliary channels that may contain information about these noise sources. This paper describes an algorithm that uses linear regression, namely lasso (least absolute shrinkage and selection operator) regression, to analyze all of these channels and identify a small subset of them that can be used to reconstruct variations in LIGO's astrophysical range. Exemplary results of the application of this method to three different periods of LIGO Livingston data are presented, along with computational performance and current limitations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1807.02592</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073405319
source Publicly Available Content Database
subjects Algorithms
Channels
Gravitational waves
Noise
Observatories
Regression analysis
title Identifying correlations between LIGO's astronomical range and auxiliary sensors using lasso regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20correlations%20between%20LIGO's%20astronomical%20range%20and%20auxiliary%20sensors%20using%20lasso%20regression&rft.jtitle=arXiv.org&rft.au=Walker,%20Marissa&rft.date=2018-10-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1807.02592&rft_dat=%3Cproquest%3E2073405319%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-c35b3d20fcfd94c66d6a322d8acf7bdb0aa91fe45ef71f725df6af7467756d723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073405319&rft_id=info:pmid/&rfr_iscdi=true