Loading…
Urbanization affects peak timing, prevalence, and bimodality of influenza pandemics in Australia: results of a census-calibrated model
We examine salient trends of influenza pandemics in Australia, a rapidly urbanizing nation. To do so, we implement state-of-the-art influenza transmission and progression models within a large-scale stochastic computer simulation, generated using comprehensive Australian census datasets from 2006, 2...
Saved in:
Published in: | arXiv.org 2019-03 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cameron Zachreson Fair, Kristopher M Cliff, Oliver M Harding, Nathan Piraveenan, Mahendra Prokopenko, Mikhail |
description | We examine salient trends of influenza pandemics in Australia, a rapidly urbanizing nation. To do so, we implement state-of-the-art influenza transmission and progression models within a large-scale stochastic computer simulation, generated using comprehensive Australian census datasets from 2006, 2011, and 2016. Our results offer a simulation-based investigation of a population's sensitivity to pandemics across multiple historical time points, and highlight three significant trends in pandemic patterns over the years: increased peak prevalence, faster spreading rates, and decreasing spatiotemporal bimodality. We attribute these pandemic trends to increases in two key quantities indicative of urbanization: population fraction residing in major cities, and international air traffic. In addition, we identify features of the pandemic's geographic spread that we attribute to changes in the commuter mobility network. The generic nature of our model and the ubiquity of urbanization trends around the world make it likely for our results to be applicable in other rapidly urbanizing nations. |
doi_str_mv | 10.48550/arxiv.1806.04001 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073436431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073436431</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-d0fb2e21ecb4f252892b07271a1ab8c720415bddb8fd51f6f9ad810cb0a31c363</originalsourceid><addsrcrecordid>eNotjctKAzEYhYMgWGofwF3AbWf8k0xmpu5K8QYFN3Vd_twkdZoZk5mifQCf24CuDpzz8R1CbhiUVSsl3GH88qeStVCXUAGwCzLjQrCirTi_IouUDgDA64ZLKWbk5y0qDP6Mo-8DReesHhMdLH7Q0R99eF_SIdoTdjZou6QYDFX-2Bvs_PhNe0d9cN1kwxnpkEd79Drljq6nNMYM4T2NNk1dlmYYqbYhTanQeVIRR2toltnumlw67JJd_Oec7B4fdpvnYvv69LJZbwuUnBUGnOKWM6tV5bjk7YoraHjDkKFqdcOhYlIZo1pnJHO1W6FpGWgFKJgWtZiT2z_tEPvPyaZxf-inGPLjnkMjKlFXgolfdShlOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073436431</pqid></control><display><type>article</type><title>Urbanization affects peak timing, prevalence, and bimodality of influenza pandemics in Australia: results of a census-calibrated model</title><source>ProQuest - Publicly Available Content Database</source><creator>Cameron Zachreson ; Fair, Kristopher M ; Cliff, Oliver M ; Harding, Nathan ; Piraveenan, Mahendra ; Prokopenko, Mikhail</creator><creatorcontrib>Cameron Zachreson ; Fair, Kristopher M ; Cliff, Oliver M ; Harding, Nathan ; Piraveenan, Mahendra ; Prokopenko, Mikhail</creatorcontrib><description>We examine salient trends of influenza pandemics in Australia, a rapidly urbanizing nation. To do so, we implement state-of-the-art influenza transmission and progression models within a large-scale stochastic computer simulation, generated using comprehensive Australian census datasets from 2006, 2011, and 2016. Our results offer a simulation-based investigation of a population's sensitivity to pandemics across multiple historical time points, and highlight three significant trends in pandemic patterns over the years: increased peak prevalence, faster spreading rates, and decreasing spatiotemporal bimodality. We attribute these pandemic trends to increases in two key quantities indicative of urbanization: population fraction residing in major cities, and international air traffic. In addition, we identify features of the pandemic's geographic spread that we attribute to changes in the commuter mobility network. The generic nature of our model and the ubiquity of urbanization trends around the world make it likely for our results to be applicable in other rapidly urbanizing nations.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1806.04001</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Air traffic ; Computer simulation ; Influenza ; Pandemics ; Trends ; Urbanization</subject><ispartof>arXiv.org, 2019-03</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073436431?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Cameron Zachreson</creatorcontrib><creatorcontrib>Fair, Kristopher M</creatorcontrib><creatorcontrib>Cliff, Oliver M</creatorcontrib><creatorcontrib>Harding, Nathan</creatorcontrib><creatorcontrib>Piraveenan, Mahendra</creatorcontrib><creatorcontrib>Prokopenko, Mikhail</creatorcontrib><title>Urbanization affects peak timing, prevalence, and bimodality of influenza pandemics in Australia: results of a census-calibrated model</title><title>arXiv.org</title><description>We examine salient trends of influenza pandemics in Australia, a rapidly urbanizing nation. To do so, we implement state-of-the-art influenza transmission and progression models within a large-scale stochastic computer simulation, generated using comprehensive Australian census datasets from 2006, 2011, and 2016. Our results offer a simulation-based investigation of a population's sensitivity to pandemics across multiple historical time points, and highlight three significant trends in pandemic patterns over the years: increased peak prevalence, faster spreading rates, and decreasing spatiotemporal bimodality. We attribute these pandemic trends to increases in two key quantities indicative of urbanization: population fraction residing in major cities, and international air traffic. In addition, we identify features of the pandemic's geographic spread that we attribute to changes in the commuter mobility network. The generic nature of our model and the ubiquity of urbanization trends around the world make it likely for our results to be applicable in other rapidly urbanizing nations.</description><subject>Air traffic</subject><subject>Computer simulation</subject><subject>Influenza</subject><subject>Pandemics</subject><subject>Trends</subject><subject>Urbanization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEYhYMgWGofwF3AbWf8k0xmpu5K8QYFN3Vd_twkdZoZk5mifQCf24CuDpzz8R1CbhiUVSsl3GH88qeStVCXUAGwCzLjQrCirTi_IouUDgDA64ZLKWbk5y0qDP6Mo-8DReesHhMdLH7Q0R99eF_SIdoTdjZou6QYDFX-2Bvs_PhNe0d9cN1kwxnpkEd79Drljq6nNMYM4T2NNk1dlmYYqbYhTanQeVIRR2toltnumlw67JJd_Oec7B4fdpvnYvv69LJZbwuUnBUGnOKWM6tV5bjk7YoraHjDkKFqdcOhYlIZo1pnJHO1W6FpGWgFKJgWtZiT2z_tEPvPyaZxf-inGPLjnkMjKlFXgolfdShlOQ</recordid><startdate>20190326</startdate><enddate>20190326</enddate><creator>Cameron Zachreson</creator><creator>Fair, Kristopher M</creator><creator>Cliff, Oliver M</creator><creator>Harding, Nathan</creator><creator>Piraveenan, Mahendra</creator><creator>Prokopenko, Mikhail</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190326</creationdate><title>Urbanization affects peak timing, prevalence, and bimodality of influenza pandemics in Australia: results of a census-calibrated model</title><author>Cameron Zachreson ; Fair, Kristopher M ; Cliff, Oliver M ; Harding, Nathan ; Piraveenan, Mahendra ; Prokopenko, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-d0fb2e21ecb4f252892b07271a1ab8c720415bddb8fd51f6f9ad810cb0a31c363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air traffic</topic><topic>Computer simulation</topic><topic>Influenza</topic><topic>Pandemics</topic><topic>Trends</topic><topic>Urbanization</topic><toplevel>online_resources</toplevel><creatorcontrib>Cameron Zachreson</creatorcontrib><creatorcontrib>Fair, Kristopher M</creatorcontrib><creatorcontrib>Cliff, Oliver M</creatorcontrib><creatorcontrib>Harding, Nathan</creatorcontrib><creatorcontrib>Piraveenan, Mahendra</creatorcontrib><creatorcontrib>Prokopenko, Mikhail</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cameron Zachreson</au><au>Fair, Kristopher M</au><au>Cliff, Oliver M</au><au>Harding, Nathan</au><au>Piraveenan, Mahendra</au><au>Prokopenko, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urbanization affects peak timing, prevalence, and bimodality of influenza pandemics in Australia: results of a census-calibrated model</atitle><jtitle>arXiv.org</jtitle><date>2019-03-26</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We examine salient trends of influenza pandemics in Australia, a rapidly urbanizing nation. To do so, we implement state-of-the-art influenza transmission and progression models within a large-scale stochastic computer simulation, generated using comprehensive Australian census datasets from 2006, 2011, and 2016. Our results offer a simulation-based investigation of a population's sensitivity to pandemics across multiple historical time points, and highlight three significant trends in pandemic patterns over the years: increased peak prevalence, faster spreading rates, and decreasing spatiotemporal bimodality. We attribute these pandemic trends to increases in two key quantities indicative of urbanization: population fraction residing in major cities, and international air traffic. In addition, we identify features of the pandemic's geographic spread that we attribute to changes in the commuter mobility network. The generic nature of our model and the ubiquity of urbanization trends around the world make it likely for our results to be applicable in other rapidly urbanizing nations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1806.04001</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073436431 |
source | ProQuest - Publicly Available Content Database |
subjects | Air traffic Computer simulation Influenza Pandemics Trends Urbanization |
title | Urbanization affects peak timing, prevalence, and bimodality of influenza pandemics in Australia: results of a census-calibrated model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urbanization%20affects%20peak%20timing,%20prevalence,%20and%20bimodality%20of%20influenza%20pandemics%20in%20Australia:%20results%20of%20a%20census-calibrated%20model&rft.jtitle=arXiv.org&rft.au=Cameron%20Zachreson&rft.date=2019-03-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1806.04001&rft_dat=%3Cproquest%3E2073436431%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-d0fb2e21ecb4f252892b07271a1ab8c720415bddb8fd51f6f9ad810cb0a31c363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073436431&rft_id=info:pmid/&rfr_iscdi=true |