Loading…
Near-focus high-sensitivity wavefront sensing
A new method of wavefront sensing that uses a pair of equally defocused images to derive the wavefront aberrations is presented. Unlike in conventional curvature-sensing systems, the sensor works in a near-focus regime where the transport of intensity equation is not valid, and, unlike in phase-dive...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2005-07, Vol.360 (4), p.1325-1332 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new method of wavefront sensing that uses a pair of equally defocused images to derive the wavefront aberrations is presented. Unlike in conventional curvature-sensing systems, the sensor works in a near-focus regime where the transport of intensity equation is not valid, and, unlike in phase-diversity methods, a non-iterative algorithm is used to infer the wavefront aberrations. The sensor designs outlined only require a small number of detector pixels: two designs with five and nine pixels per plane are analysed, and the nine-element sensor (NES) is shown to have a competitive measurement sensitivity compared with existing low-order astronomical wavefront sensors. The NES is thus well suited to applications such as adaptive optics for the individual telescopes in an optical interferometer array. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1111/j.1365-2966.2005.09117.x |