Loading…
A new approach for the determination of the global minimum time for the brachistochrone with preselected interval for the normal reaction force value
We consider the brachistochrone problem of the particle with a preselected interval for the normal reaction force value as well as the terminal position of the particle lying on an arbitrary planar curve. We use optimal control theory to solve the formulated brachistochrone problem. Here we treat th...
Saved in:
Published in: | International journal of non-linear mechanics 2018-05, Vol.101, p.26-35 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-97a1f31acb9690101429ab894503a0855380a70ff6cff0c6541cca8f73e57913 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-97a1f31acb9690101429ab894503a0855380a70ff6cff0c6541cca8f73e57913 |
container_end_page | 35 |
container_issue | |
container_start_page | 26 |
container_title | International journal of non-linear mechanics |
container_volume | 101 |
creator | Radulović, Radoslav Jeremić, Bojan Šalinić, Slaviša Obradović, Aleksandar Dražić, Milan |
description | We consider the brachistochrone problem of the particle with a preselected interval for the normal reaction force value as well as the terminal position of the particle lying on an arbitrary planar curve. We use optimal control theory to solve the formulated brachistochrone problem. Here we treat the brachistochrone curve as a bilateral ideal constraint. We study the cases of symmetrically and unsymmetrically preselected intervals for the normal reaction force value. We show that in the case of a symmetrically preselected interval for the normal reaction force value, the brachistochrone curve is a two-segment curve, and in the case of an unsymmetrically preselected interval, it is a three-segment curve. We present a numerical procedure for the identification of the global minimum time of motion. Finally, we present several examples to illustrate the approach proposed in the paper.
•The brachistochrone problem with preselected interval for the normal reaction force value is solved.•The cases of symmetrically and unsymmetrically preselected interval for the normal reaction force value are considered.•A numerical procedure for the identification of the global minimum time of motion is presented. |
doi_str_mv | 10.1016/j.ijnonlinmec.2018.02.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2073508357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746217306182</els_id><sourcerecordid>2073508357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-97a1f31acb9690101429ab894503a0855380a70ff6cff0c6541cca8f73e57913</originalsourceid><addsrcrecordid>eNqNkUFvGyEQhVHUSnWd_geinHczLLsLe7SstolkKRffEcZDzWoXHMCJ-kP6f4vtNuqxJ8TofW807xFyx6BmwPqHsXajD35yfkZTN8BkDU0NwG7Igkkhq67n8gNZADRQibZvPpHPKY1F0LcgFuTXinp8o_p4jEGbA7Uh0nxAuseMcXZeZxc8DfYy_DGFnZ5oGbv5NNPsZnwHdrHgLuVgDjF4pG8uH-gxYsIJTcY9db44vhb8L-FDnMs3ojaXJWVukBbFCW_JR6unhF_-vEuy_fZ1u36sNs_fn9arTWV4O-RqEJpZzrTZDf0AJY-2GfRODm0HXIPsOi5BC7C2N9aC6buWGaOlFRw7MTC-JPdX23L8ywlTVmM4RV82qgYE70DyThTVcFWZGFKKaNUxulnHn4qBOpegRvVPCepcgoJGlYwLu76yWK54dRhVMg69wb2LJRa1D-4_XH4DFfeZDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073508357</pqid></control><display><type>article</type><title>A new approach for the determination of the global minimum time for the brachistochrone with preselected interval for the normal reaction force value</title><source>ScienceDirect Journals</source><source>Backfile Package - Physics General (Legacy) [YPA]</source><creator>Radulović, Radoslav ; Jeremić, Bojan ; Šalinić, Slaviša ; Obradović, Aleksandar ; Dražić, Milan</creator><creatorcontrib>Radulović, Radoslav ; Jeremić, Bojan ; Šalinić, Slaviša ; Obradović, Aleksandar ; Dražić, Milan</creatorcontrib><description>We consider the brachistochrone problem of the particle with a preselected interval for the normal reaction force value as well as the terminal position of the particle lying on an arbitrary planar curve. We use optimal control theory to solve the formulated brachistochrone problem. Here we treat the brachistochrone curve as a bilateral ideal constraint. We study the cases of symmetrically and unsymmetrically preselected intervals for the normal reaction force value. We show that in the case of a symmetrically preselected interval for the normal reaction force value, the brachistochrone curve is a two-segment curve, and in the case of an unsymmetrically preselected interval, it is a three-segment curve. We present a numerical procedure for the identification of the global minimum time of motion. Finally, we present several examples to illustrate the approach proposed in the paper.
•The brachistochrone problem with preselected interval for the normal reaction force value is solved.•The cases of symmetrically and unsymmetrically preselected interval for the normal reaction force value are considered.•A numerical procedure for the identification of the global minimum time of motion is presented.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2018.02.001</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Brachistochrone ; Control theory ; Global minimum time ; Mathematics ; Optimal control ; Optimization ; Singular control ; Symmetry</subject><ispartof>International journal of non-linear mechanics, 2018-05, Vol.101, p.26-35</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-97a1f31acb9690101429ab894503a0855380a70ff6cff0c6541cca8f73e57913</citedby><cites>FETCH-LOGICAL-c349t-97a1f31acb9690101429ab894503a0855380a70ff6cff0c6541cca8f73e57913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746217306182$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3632,27924,27925,46012</link.rule.ids></links><search><creatorcontrib>Radulović, Radoslav</creatorcontrib><creatorcontrib>Jeremić, Bojan</creatorcontrib><creatorcontrib>Šalinić, Slaviša</creatorcontrib><creatorcontrib>Obradović, Aleksandar</creatorcontrib><creatorcontrib>Dražić, Milan</creatorcontrib><title>A new approach for the determination of the global minimum time for the brachistochrone with preselected interval for the normal reaction force value</title><title>International journal of non-linear mechanics</title><description>We consider the brachistochrone problem of the particle with a preselected interval for the normal reaction force value as well as the terminal position of the particle lying on an arbitrary planar curve. We use optimal control theory to solve the formulated brachistochrone problem. Here we treat the brachistochrone curve as a bilateral ideal constraint. We study the cases of symmetrically and unsymmetrically preselected intervals for the normal reaction force value. We show that in the case of a symmetrically preselected interval for the normal reaction force value, the brachistochrone curve is a two-segment curve, and in the case of an unsymmetrically preselected interval, it is a three-segment curve. We present a numerical procedure for the identification of the global minimum time of motion. Finally, we present several examples to illustrate the approach proposed in the paper.
•The brachistochrone problem with preselected interval for the normal reaction force value is solved.•The cases of symmetrically and unsymmetrically preselected interval for the normal reaction force value are considered.•A numerical procedure for the identification of the global minimum time of motion is presented.</description><subject>Brachistochrone</subject><subject>Control theory</subject><subject>Global minimum time</subject><subject>Mathematics</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Singular control</subject><subject>Symmetry</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkUFvGyEQhVHUSnWd_geinHczLLsLe7SstolkKRffEcZDzWoXHMCJ-kP6f4vtNuqxJ8TofW807xFyx6BmwPqHsXajD35yfkZTN8BkDU0NwG7Igkkhq67n8gNZADRQibZvPpHPKY1F0LcgFuTXinp8o_p4jEGbA7Uh0nxAuseMcXZeZxc8DfYy_DGFnZ5oGbv5NNPsZnwHdrHgLuVgDjF4pG8uH-gxYsIJTcY9db44vhb8L-FDnMs3ojaXJWVukBbFCW_JR6unhF_-vEuy_fZ1u36sNs_fn9arTWV4O-RqEJpZzrTZDf0AJY-2GfRODm0HXIPsOi5BC7C2N9aC6buWGaOlFRw7MTC-JPdX23L8ywlTVmM4RV82qgYE70DyThTVcFWZGFKKaNUxulnHn4qBOpegRvVPCepcgoJGlYwLu76yWK54dRhVMg69wb2LJRa1D-4_XH4DFfeZDg</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Radulović, Radoslav</creator><creator>Jeremić, Bojan</creator><creator>Šalinić, Slaviša</creator><creator>Obradović, Aleksandar</creator><creator>Dražić, Milan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201805</creationdate><title>A new approach for the determination of the global minimum time for the brachistochrone with preselected interval for the normal reaction force value</title><author>Radulović, Radoslav ; Jeremić, Bojan ; Šalinić, Slaviša ; Obradović, Aleksandar ; Dražić, Milan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-97a1f31acb9690101429ab894503a0855380a70ff6cff0c6541cca8f73e57913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Brachistochrone</topic><topic>Control theory</topic><topic>Global minimum time</topic><topic>Mathematics</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Singular control</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radulović, Radoslav</creatorcontrib><creatorcontrib>Jeremić, Bojan</creatorcontrib><creatorcontrib>Šalinić, Slaviša</creatorcontrib><creatorcontrib>Obradović, Aleksandar</creatorcontrib><creatorcontrib>Dražić, Milan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radulović, Radoslav</au><au>Jeremić, Bojan</au><au>Šalinić, Slaviša</au><au>Obradović, Aleksandar</au><au>Dražić, Milan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach for the determination of the global minimum time for the brachistochrone with preselected interval for the normal reaction force value</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2018-05</date><risdate>2018</risdate><volume>101</volume><spage>26</spage><epage>35</epage><pages>26-35</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>We consider the brachistochrone problem of the particle with a preselected interval for the normal reaction force value as well as the terminal position of the particle lying on an arbitrary planar curve. We use optimal control theory to solve the formulated brachistochrone problem. Here we treat the brachistochrone curve as a bilateral ideal constraint. We study the cases of symmetrically and unsymmetrically preselected intervals for the normal reaction force value. We show that in the case of a symmetrically preselected interval for the normal reaction force value, the brachistochrone curve is a two-segment curve, and in the case of an unsymmetrically preselected interval, it is a three-segment curve. We present a numerical procedure for the identification of the global minimum time of motion. Finally, we present several examples to illustrate the approach proposed in the paper.
•The brachistochrone problem with preselected interval for the normal reaction force value is solved.•The cases of symmetrically and unsymmetrically preselected interval for the normal reaction force value are considered.•A numerical procedure for the identification of the global minimum time of motion is presented.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2018.02.001</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7462 |
ispartof | International journal of non-linear mechanics, 2018-05, Vol.101, p.26-35 |
issn | 0020-7462 1878-5638 |
language | eng |
recordid | cdi_proquest_journals_2073508357 |
source | ScienceDirect Journals; Backfile Package - Physics General (Legacy) [YPA] |
subjects | Brachistochrone Control theory Global minimum time Mathematics Optimal control Optimization Singular control Symmetry |
title | A new approach for the determination of the global minimum time for the brachistochrone with preselected interval for the normal reaction force value |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20for%20the%20determination%20of%20the%20global%20minimum%20time%20for%20the%20brachistochrone%20with%20preselected%20interval%20for%20the%20normal%20reaction%20force%20value&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Radulovi%C4%87,%20Radoslav&rft.date=2018-05&rft.volume=101&rft.spage=26&rft.epage=35&rft.pages=26-35&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2018.02.001&rft_dat=%3Cproquest_cross%3E2073508357%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-97a1f31acb9690101429ab894503a0855380a70ff6cff0c6541cca8f73e57913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073508357&rft_id=info:pmid/&rfr_iscdi=true |