Loading…

A new approach for the determination of the global minimum time for the brachistochrone with preselected interval for the normal reaction force value

We consider the brachistochrone problem of the particle with a preselected interval for the normal reaction force value as well as the terminal position of the particle lying on an arbitrary planar curve. We use optimal control theory to solve the formulated brachistochrone problem. Here we treat th...

Full description

Saved in:
Bibliographic Details
Published in:International journal of non-linear mechanics 2018-05, Vol.101, p.26-35
Main Authors: Radulović, Radoslav, Jeremić, Bojan, Šalinić, Slaviša, Obradović, Aleksandar, Dražić, Milan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-97a1f31acb9690101429ab894503a0855380a70ff6cff0c6541cca8f73e57913
cites cdi_FETCH-LOGICAL-c349t-97a1f31acb9690101429ab894503a0855380a70ff6cff0c6541cca8f73e57913
container_end_page 35
container_issue
container_start_page 26
container_title International journal of non-linear mechanics
container_volume 101
creator Radulović, Radoslav
Jeremić, Bojan
Šalinić, Slaviša
Obradović, Aleksandar
Dražić, Milan
description We consider the brachistochrone problem of the particle with a preselected interval for the normal reaction force value as well as the terminal position of the particle lying on an arbitrary planar curve. We use optimal control theory to solve the formulated brachistochrone problem. Here we treat the brachistochrone curve as a bilateral ideal constraint. We study the cases of symmetrically and unsymmetrically preselected intervals for the normal reaction force value. We show that in the case of a symmetrically preselected interval for the normal reaction force value, the brachistochrone curve is a two-segment curve, and in the case of an unsymmetrically preselected interval, it is a three-segment curve. We present a numerical procedure for the identification of the global minimum time of motion. Finally, we present several examples to illustrate the approach proposed in the paper. •The brachistochrone problem with preselected interval for the normal reaction force value is solved.•The cases of symmetrically and unsymmetrically preselected interval for the normal reaction force value are considered.•A numerical procedure for the identification of the global minimum time of motion is presented.
doi_str_mv 10.1016/j.ijnonlinmec.2018.02.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2073508357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746217306182</els_id><sourcerecordid>2073508357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-97a1f31acb9690101429ab894503a0855380a70ff6cff0c6541cca8f73e57913</originalsourceid><addsrcrecordid>eNqNkUFvGyEQhVHUSnWd_geinHczLLsLe7SstolkKRffEcZDzWoXHMCJ-kP6f4vtNuqxJ8TofW807xFyx6BmwPqHsXajD35yfkZTN8BkDU0NwG7Igkkhq67n8gNZADRQibZvPpHPKY1F0LcgFuTXinp8o_p4jEGbA7Uh0nxAuseMcXZeZxc8DfYy_DGFnZ5oGbv5NNPsZnwHdrHgLuVgDjF4pG8uH-gxYsIJTcY9db44vhb8L-FDnMs3ojaXJWVukBbFCW_JR6unhF_-vEuy_fZ1u36sNs_fn9arTWV4O-RqEJpZzrTZDf0AJY-2GfRODm0HXIPsOi5BC7C2N9aC6buWGaOlFRw7MTC-JPdX23L8ywlTVmM4RV82qgYE70DyThTVcFWZGFKKaNUxulnHn4qBOpegRvVPCepcgoJGlYwLu76yWK54dRhVMg69wb2LJRa1D-4_XH4DFfeZDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073508357</pqid></control><display><type>article</type><title>A new approach for the determination of the global minimum time for the brachistochrone with preselected interval for the normal reaction force value</title><source>ScienceDirect Journals</source><source>Backfile Package - Physics General (Legacy) [YPA]</source><creator>Radulović, Radoslav ; Jeremić, Bojan ; Šalinić, Slaviša ; Obradović, Aleksandar ; Dražić, Milan</creator><creatorcontrib>Radulović, Radoslav ; Jeremić, Bojan ; Šalinić, Slaviša ; Obradović, Aleksandar ; Dražić, Milan</creatorcontrib><description>We consider the brachistochrone problem of the particle with a preselected interval for the normal reaction force value as well as the terminal position of the particle lying on an arbitrary planar curve. We use optimal control theory to solve the formulated brachistochrone problem. Here we treat the brachistochrone curve as a bilateral ideal constraint. We study the cases of symmetrically and unsymmetrically preselected intervals for the normal reaction force value. We show that in the case of a symmetrically preselected interval for the normal reaction force value, the brachistochrone curve is a two-segment curve, and in the case of an unsymmetrically preselected interval, it is a three-segment curve. We present a numerical procedure for the identification of the global minimum time of motion. Finally, we present several examples to illustrate the approach proposed in the paper. •The brachistochrone problem with preselected interval for the normal reaction force value is solved.•The cases of symmetrically and unsymmetrically preselected interval for the normal reaction force value are considered.•A numerical procedure for the identification of the global minimum time of motion is presented.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2018.02.001</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Brachistochrone ; Control theory ; Global minimum time ; Mathematics ; Optimal control ; Optimization ; Singular control ; Symmetry</subject><ispartof>International journal of non-linear mechanics, 2018-05, Vol.101, p.26-35</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-97a1f31acb9690101429ab894503a0855380a70ff6cff0c6541cca8f73e57913</citedby><cites>FETCH-LOGICAL-c349t-97a1f31acb9690101429ab894503a0855380a70ff6cff0c6541cca8f73e57913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746217306182$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3632,27924,27925,46012</link.rule.ids></links><search><creatorcontrib>Radulović, Radoslav</creatorcontrib><creatorcontrib>Jeremić, Bojan</creatorcontrib><creatorcontrib>Šalinić, Slaviša</creatorcontrib><creatorcontrib>Obradović, Aleksandar</creatorcontrib><creatorcontrib>Dražić, Milan</creatorcontrib><title>A new approach for the determination of the global minimum time for the brachistochrone with preselected interval for the normal reaction force value</title><title>International journal of non-linear mechanics</title><description>We consider the brachistochrone problem of the particle with a preselected interval for the normal reaction force value as well as the terminal position of the particle lying on an arbitrary planar curve. We use optimal control theory to solve the formulated brachistochrone problem. Here we treat the brachistochrone curve as a bilateral ideal constraint. We study the cases of symmetrically and unsymmetrically preselected intervals for the normal reaction force value. We show that in the case of a symmetrically preselected interval for the normal reaction force value, the brachistochrone curve is a two-segment curve, and in the case of an unsymmetrically preselected interval, it is a three-segment curve. We present a numerical procedure for the identification of the global minimum time of motion. Finally, we present several examples to illustrate the approach proposed in the paper. •The brachistochrone problem with preselected interval for the normal reaction force value is solved.•The cases of symmetrically and unsymmetrically preselected interval for the normal reaction force value are considered.•A numerical procedure for the identification of the global minimum time of motion is presented.</description><subject>Brachistochrone</subject><subject>Control theory</subject><subject>Global minimum time</subject><subject>Mathematics</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Singular control</subject><subject>Symmetry</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkUFvGyEQhVHUSnWd_geinHczLLsLe7SstolkKRffEcZDzWoXHMCJ-kP6f4vtNuqxJ8TofW807xFyx6BmwPqHsXajD35yfkZTN8BkDU0NwG7Igkkhq67n8gNZADRQibZvPpHPKY1F0LcgFuTXinp8o_p4jEGbA7Uh0nxAuseMcXZeZxc8DfYy_DGFnZ5oGbv5NNPsZnwHdrHgLuVgDjF4pG8uH-gxYsIJTcY9db44vhb8L-FDnMs3ojaXJWVukBbFCW_JR6unhF_-vEuy_fZ1u36sNs_fn9arTWV4O-RqEJpZzrTZDf0AJY-2GfRODm0HXIPsOi5BC7C2N9aC6buWGaOlFRw7MTC-JPdX23L8ywlTVmM4RV82qgYE70DyThTVcFWZGFKKaNUxulnHn4qBOpegRvVPCepcgoJGlYwLu76yWK54dRhVMg69wb2LJRa1D-4_XH4DFfeZDg</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Radulović, Radoslav</creator><creator>Jeremić, Bojan</creator><creator>Šalinić, Slaviša</creator><creator>Obradović, Aleksandar</creator><creator>Dražić, Milan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201805</creationdate><title>A new approach for the determination of the global minimum time for the brachistochrone with preselected interval for the normal reaction force value</title><author>Radulović, Radoslav ; Jeremić, Bojan ; Šalinić, Slaviša ; Obradović, Aleksandar ; Dražić, Milan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-97a1f31acb9690101429ab894503a0855380a70ff6cff0c6541cca8f73e57913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Brachistochrone</topic><topic>Control theory</topic><topic>Global minimum time</topic><topic>Mathematics</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Singular control</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radulović, Radoslav</creatorcontrib><creatorcontrib>Jeremić, Bojan</creatorcontrib><creatorcontrib>Šalinić, Slaviša</creatorcontrib><creatorcontrib>Obradović, Aleksandar</creatorcontrib><creatorcontrib>Dražić, Milan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radulović, Radoslav</au><au>Jeremić, Bojan</au><au>Šalinić, Slaviša</au><au>Obradović, Aleksandar</au><au>Dražić, Milan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach for the determination of the global minimum time for the brachistochrone with preselected interval for the normal reaction force value</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2018-05</date><risdate>2018</risdate><volume>101</volume><spage>26</spage><epage>35</epage><pages>26-35</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>We consider the brachistochrone problem of the particle with a preselected interval for the normal reaction force value as well as the terminal position of the particle lying on an arbitrary planar curve. We use optimal control theory to solve the formulated brachistochrone problem. Here we treat the brachistochrone curve as a bilateral ideal constraint. We study the cases of symmetrically and unsymmetrically preselected intervals for the normal reaction force value. We show that in the case of a symmetrically preselected interval for the normal reaction force value, the brachistochrone curve is a two-segment curve, and in the case of an unsymmetrically preselected interval, it is a three-segment curve. We present a numerical procedure for the identification of the global minimum time of motion. Finally, we present several examples to illustrate the approach proposed in the paper. •The brachistochrone problem with preselected interval for the normal reaction force value is solved.•The cases of symmetrically and unsymmetrically preselected interval for the normal reaction force value are considered.•A numerical procedure for the identification of the global minimum time of motion is presented.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2018.02.001</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2018-05, Vol.101, p.26-35
issn 0020-7462
1878-5638
language eng
recordid cdi_proquest_journals_2073508357
source ScienceDirect Journals; Backfile Package - Physics General (Legacy) [YPA]
subjects Brachistochrone
Control theory
Global minimum time
Mathematics
Optimal control
Optimization
Singular control
Symmetry
title A new approach for the determination of the global minimum time for the brachistochrone with preselected interval for the normal reaction force value
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20for%20the%20determination%20of%20the%20global%20minimum%20time%20for%20the%20brachistochrone%20with%20preselected%20interval%20for%20the%20normal%20reaction%20force%20value&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Radulovi%C4%87,%20Radoslav&rft.date=2018-05&rft.volume=101&rft.spage=26&rft.epage=35&rft.pages=26-35&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2018.02.001&rft_dat=%3Cproquest_cross%3E2073508357%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-97a1f31acb9690101429ab894503a0855380a70ff6cff0c6541cca8f73e57913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073508357&rft_id=info:pmid/&rfr_iscdi=true