Loading…
Extended State Dependent Parameter modelling with a Data-Based Mechanistic approach to nonlinear model structure identification
A unified approach to Multiple and single State Dependent Parameter modelling, termed Extended State Dependent Parameters (ESDP) modelling, of nonlinear dynamic systems described by time-varying dynamic models applied to ARX or transfer-function model structures. Crucially, the approach proposes an...
Saved in:
Published in: | Environmental modelling & software : with environment data news 2018-06, Vol.104, p.81-93 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-d553cbea0ad479d7b56b684b9a3894208dab9ee57000f35d5c926a10a08a98613 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-d553cbea0ad479d7b56b684b9a3894208dab9ee57000f35d5c926a10a08a98613 |
container_end_page | 93 |
container_issue | |
container_start_page | 81 |
container_title | Environmental modelling & software : with environment data news |
container_volume | 104 |
creator | Mindham, David A. Tych, Wlodzimierz Chappell, Nick A. |
description | A unified approach to Multiple and single State Dependent Parameter modelling, termed Extended State Dependent Parameters (ESDP) modelling, of nonlinear dynamic systems described by time-varying dynamic models applied to ARX or transfer-function model structures. Crucially, the approach proposes an effective model structure identification method using a novel Information Criterion (IC) taking into account model complexity in terms of the number of states involved. In ESDP, model structure involves not only the model orders, but also selection of the states driving the parameters, which effectively prevents the use of most current IC. This leads to a powerful methodology for investigating nonlinear systems building on the Data-Based Mechanistic (DBM) philosophy of Young and expanding the applications of the existing DBM methods. The methodologies presented are tested and demonstrated on both simulated data and on high frequency hydrological observations, showing how structure identification leads to discovery of dynamic relationships between system variables.
•Extension of Data-Based Mechanistic modelling of non-linear systems.•Identification of model structure for a significant class of non-linear systems.•State-Dependent Parameters extended for irregularly spaced data.•Application to environmental systems – water quality dynamics. |
doi_str_mv | 10.1016/j.envsoft.2018.02.015 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2073511952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815217305698</els_id><sourcerecordid>2073511952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-d553cbea0ad479d7b56b684b9a3894208dab9ee57000f35d5c926a10a08a98613</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYsoeP0JQsDn1iRt2vRJvCsoCupzmCZTN8tusiZZL0_-dbPsvvs0M3C-MzOnKI4ZrRhl7em0QvcZ_ZgqTpmsKK8oE1vFHpNdXbYdb7dzX7dNKZngu8V-jFNKs4Q3e8Xv9XdCZ9CQlwQJyRUuVqNL5BkCzDFhIHNvcDaz7p182TQhQK4gQXkBMVOPqCfgbExWE1gsggc9IckT510mEDY0iSksdVoGJHblbkerIVnvDoudEWYRjzb1oHi7uX69vCsfnm7vL88fSl3LJpVGiFoPCBRM0_WmG0Q7tLIZeqhl33AqDQw9oujyY2MtjNA9b4FRoBJ62bL6oDhZ--YTP5YYk5r6ZXB5peK0qwVjveBZJdYqHXyMAUe1CHYO4UcxqlZZq6naZK1WWSvKVQ4yc2drDvMLnxaDitqi02hsQJ2U8fYfhz8Vt4zp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073511952</pqid></control><display><type>article</type><title>Extended State Dependent Parameter modelling with a Data-Based Mechanistic approach to nonlinear model structure identification</title><source>ScienceDirect Freedom Collection</source><creator>Mindham, David A. ; Tych, Wlodzimierz ; Chappell, Nick A.</creator><creatorcontrib>Mindham, David A. ; Tych, Wlodzimierz ; Chappell, Nick A.</creatorcontrib><description>A unified approach to Multiple and single State Dependent Parameter modelling, termed Extended State Dependent Parameters (ESDP) modelling, of nonlinear dynamic systems described by time-varying dynamic models applied to ARX or transfer-function model structures. Crucially, the approach proposes an effective model structure identification method using a novel Information Criterion (IC) taking into account model complexity in terms of the number of states involved. In ESDP, model structure involves not only the model orders, but also selection of the states driving the parameters, which effectively prevents the use of most current IC. This leads to a powerful methodology for investigating nonlinear systems building on the Data-Based Mechanistic (DBM) philosophy of Young and expanding the applications of the existing DBM methods. The methodologies presented are tested and demonstrated on both simulated data and on high frequency hydrological observations, showing how structure identification leads to discovery of dynamic relationships between system variables.
•Extension of Data-Based Mechanistic modelling of non-linear systems.•Identification of model structure for a significant class of non-linear systems.•State-Dependent Parameters extended for irregularly spaced data.•Application to environmental systems – water quality dynamics.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2018.02.015</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computer simulation ; Data analysis ; Data based mechanistic modelling ; Dynamic models ; Dynamical systems ; Hydrologic data ; Hydrologic modeling ; Hydrologic models ; Hydrological modelling ; Hydrology ; Information Criterion ; Model identification ; Modelling ; Nonlinear dynamic systems ; Nonlinear systems ; Parameter identification ; State-dependent parameters</subject><ispartof>Environmental modelling & software : with environment data news, 2018-06, Vol.104, p.81-93</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-d553cbea0ad479d7b56b684b9a3894208dab9ee57000f35d5c926a10a08a98613</citedby><cites>FETCH-LOGICAL-c384t-d553cbea0ad479d7b56b684b9a3894208dab9ee57000f35d5c926a10a08a98613</cites><orcidid>0000-0003-1655-844X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mindham, David A.</creatorcontrib><creatorcontrib>Tych, Wlodzimierz</creatorcontrib><creatorcontrib>Chappell, Nick A.</creatorcontrib><title>Extended State Dependent Parameter modelling with a Data-Based Mechanistic approach to nonlinear model structure identification</title><title>Environmental modelling & software : with environment data news</title><description>A unified approach to Multiple and single State Dependent Parameter modelling, termed Extended State Dependent Parameters (ESDP) modelling, of nonlinear dynamic systems described by time-varying dynamic models applied to ARX or transfer-function model structures. Crucially, the approach proposes an effective model structure identification method using a novel Information Criterion (IC) taking into account model complexity in terms of the number of states involved. In ESDP, model structure involves not only the model orders, but also selection of the states driving the parameters, which effectively prevents the use of most current IC. This leads to a powerful methodology for investigating nonlinear systems building on the Data-Based Mechanistic (DBM) philosophy of Young and expanding the applications of the existing DBM methods. The methodologies presented are tested and demonstrated on both simulated data and on high frequency hydrological observations, showing how structure identification leads to discovery of dynamic relationships between system variables.
•Extension of Data-Based Mechanistic modelling of non-linear systems.•Identification of model structure for a significant class of non-linear systems.•State-Dependent Parameters extended for irregularly spaced data.•Application to environmental systems – water quality dynamics.</description><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Data based mechanistic modelling</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Hydrologic data</subject><subject>Hydrologic modeling</subject><subject>Hydrologic models</subject><subject>Hydrological modelling</subject><subject>Hydrology</subject><subject>Information Criterion</subject><subject>Model identification</subject><subject>Modelling</subject><subject>Nonlinear dynamic systems</subject><subject>Nonlinear systems</subject><subject>Parameter identification</subject><subject>State-dependent parameters</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYsoeP0JQsDn1iRt2vRJvCsoCupzmCZTN8tusiZZL0_-dbPsvvs0M3C-MzOnKI4ZrRhl7em0QvcZ_ZgqTpmsKK8oE1vFHpNdXbYdb7dzX7dNKZngu8V-jFNKs4Q3e8Xv9XdCZ9CQlwQJyRUuVqNL5BkCzDFhIHNvcDaz7p182TQhQK4gQXkBMVOPqCfgbExWE1gsggc9IckT510mEDY0iSksdVoGJHblbkerIVnvDoudEWYRjzb1oHi7uX69vCsfnm7vL88fSl3LJpVGiFoPCBRM0_WmG0Q7tLIZeqhl33AqDQw9oujyY2MtjNA9b4FRoBJ62bL6oDhZ--YTP5YYk5r6ZXB5peK0qwVjveBZJdYqHXyMAUe1CHYO4UcxqlZZq6naZK1WWSvKVQ4yc2drDvMLnxaDitqi02hsQJ2U8fYfhz8Vt4zp</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Mindham, David A.</creator><creator>Tych, Wlodzimierz</creator><creator>Chappell, Nick A.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1655-844X</orcidid></search><sort><creationdate>201806</creationdate><title>Extended State Dependent Parameter modelling with a Data-Based Mechanistic approach to nonlinear model structure identification</title><author>Mindham, David A. ; Tych, Wlodzimierz ; Chappell, Nick A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-d553cbea0ad479d7b56b684b9a3894208dab9ee57000f35d5c926a10a08a98613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Data based mechanistic modelling</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Hydrologic data</topic><topic>Hydrologic modeling</topic><topic>Hydrologic models</topic><topic>Hydrological modelling</topic><topic>Hydrology</topic><topic>Information Criterion</topic><topic>Model identification</topic><topic>Modelling</topic><topic>Nonlinear dynamic systems</topic><topic>Nonlinear systems</topic><topic>Parameter identification</topic><topic>State-dependent parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mindham, David A.</creatorcontrib><creatorcontrib>Tych, Wlodzimierz</creatorcontrib><creatorcontrib>Chappell, Nick A.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling & software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mindham, David A.</au><au>Tych, Wlodzimierz</au><au>Chappell, Nick A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended State Dependent Parameter modelling with a Data-Based Mechanistic approach to nonlinear model structure identification</atitle><jtitle>Environmental modelling & software : with environment data news</jtitle><date>2018-06</date><risdate>2018</risdate><volume>104</volume><spage>81</spage><epage>93</epage><pages>81-93</pages><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>A unified approach to Multiple and single State Dependent Parameter modelling, termed Extended State Dependent Parameters (ESDP) modelling, of nonlinear dynamic systems described by time-varying dynamic models applied to ARX or transfer-function model structures. Crucially, the approach proposes an effective model structure identification method using a novel Information Criterion (IC) taking into account model complexity in terms of the number of states involved. In ESDP, model structure involves not only the model orders, but also selection of the states driving the parameters, which effectively prevents the use of most current IC. This leads to a powerful methodology for investigating nonlinear systems building on the Data-Based Mechanistic (DBM) philosophy of Young and expanding the applications of the existing DBM methods. The methodologies presented are tested and demonstrated on both simulated data and on high frequency hydrological observations, showing how structure identification leads to discovery of dynamic relationships between system variables.
•Extension of Data-Based Mechanistic modelling of non-linear systems.•Identification of model structure for a significant class of non-linear systems.•State-Dependent Parameters extended for irregularly spaced data.•Application to environmental systems – water quality dynamics.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2018.02.015</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1655-844X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-8152 |
ispartof | Environmental modelling & software : with environment data news, 2018-06, Vol.104, p.81-93 |
issn | 1364-8152 1873-6726 |
language | eng |
recordid | cdi_proquest_journals_2073511952 |
source | ScienceDirect Freedom Collection |
subjects | Computer simulation Data analysis Data based mechanistic modelling Dynamic models Dynamical systems Hydrologic data Hydrologic modeling Hydrologic models Hydrological modelling Hydrology Information Criterion Model identification Modelling Nonlinear dynamic systems Nonlinear systems Parameter identification State-dependent parameters |
title | Extended State Dependent Parameter modelling with a Data-Based Mechanistic approach to nonlinear model structure identification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20State%20Dependent%20Parameter%20modelling%20with%20a%20Data-Based%20Mechanistic%20approach%20to%20nonlinear%20model%20structure%20identification&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Mindham,%20David%20A.&rft.date=2018-06&rft.volume=104&rft.spage=81&rft.epage=93&rft.pages=81-93&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2018.02.015&rft_dat=%3Cproquest_cross%3E2073511952%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-d553cbea0ad479d7b56b684b9a3894208dab9ee57000f35d5c926a10a08a98613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073511952&rft_id=info:pmid/&rfr_iscdi=true |