Loading…

Extended State Dependent Parameter modelling with a Data-Based Mechanistic approach to nonlinear model structure identification

A unified approach to Multiple and single State Dependent Parameter modelling, termed Extended State Dependent Parameters (ESDP) modelling, of nonlinear dynamic systems described by time-varying dynamic models applied to ARX or transfer-function model structures. Crucially, the approach proposes an...

Full description

Saved in:
Bibliographic Details
Published in:Environmental modelling & software : with environment data news 2018-06, Vol.104, p.81-93
Main Authors: Mindham, David A., Tych, Wlodzimierz, Chappell, Nick A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-d553cbea0ad479d7b56b684b9a3894208dab9ee57000f35d5c926a10a08a98613
cites cdi_FETCH-LOGICAL-c384t-d553cbea0ad479d7b56b684b9a3894208dab9ee57000f35d5c926a10a08a98613
container_end_page 93
container_issue
container_start_page 81
container_title Environmental modelling & software : with environment data news
container_volume 104
creator Mindham, David A.
Tych, Wlodzimierz
Chappell, Nick A.
description A unified approach to Multiple and single State Dependent Parameter modelling, termed Extended State Dependent Parameters (ESDP) modelling, of nonlinear dynamic systems described by time-varying dynamic models applied to ARX or transfer-function model structures. Crucially, the approach proposes an effective model structure identification method using a novel Information Criterion (IC) taking into account model complexity in terms of the number of states involved. In ESDP, model structure involves not only the model orders, but also selection of the states driving the parameters, which effectively prevents the use of most current IC. This leads to a powerful methodology for investigating nonlinear systems building on the Data-Based Mechanistic (DBM) philosophy of Young and expanding the applications of the existing DBM methods. The methodologies presented are tested and demonstrated on both simulated data and on high frequency hydrological observations, showing how structure identification leads to discovery of dynamic relationships between system variables. •Extension of Data-Based Mechanistic modelling of non-linear systems.•Identification of model structure for a significant class of non-linear systems.•State-Dependent Parameters extended for irregularly spaced data.•Application to environmental systems – water quality dynamics.
doi_str_mv 10.1016/j.envsoft.2018.02.015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2073511952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815217305698</els_id><sourcerecordid>2073511952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-d553cbea0ad479d7b56b684b9a3894208dab9ee57000f35d5c926a10a08a98613</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYsoeP0JQsDn1iRt2vRJvCsoCupzmCZTN8tusiZZL0_-dbPsvvs0M3C-MzOnKI4ZrRhl7em0QvcZ_ZgqTpmsKK8oE1vFHpNdXbYdb7dzX7dNKZngu8V-jFNKs4Q3e8Xv9XdCZ9CQlwQJyRUuVqNL5BkCzDFhIHNvcDaz7p182TQhQK4gQXkBMVOPqCfgbExWE1gsggc9IckT510mEDY0iSksdVoGJHblbkerIVnvDoudEWYRjzb1oHi7uX69vCsfnm7vL88fSl3LJpVGiFoPCBRM0_WmG0Q7tLIZeqhl33AqDQw9oujyY2MtjNA9b4FRoBJ62bL6oDhZ--YTP5YYk5r6ZXB5peK0qwVjveBZJdYqHXyMAUe1CHYO4UcxqlZZq6naZK1WWSvKVQ4yc2drDvMLnxaDitqi02hsQJ2U8fYfhz8Vt4zp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073511952</pqid></control><display><type>article</type><title>Extended State Dependent Parameter modelling with a Data-Based Mechanistic approach to nonlinear model structure identification</title><source>ScienceDirect Freedom Collection</source><creator>Mindham, David A. ; Tych, Wlodzimierz ; Chappell, Nick A.</creator><creatorcontrib>Mindham, David A. ; Tych, Wlodzimierz ; Chappell, Nick A.</creatorcontrib><description>A unified approach to Multiple and single State Dependent Parameter modelling, termed Extended State Dependent Parameters (ESDP) modelling, of nonlinear dynamic systems described by time-varying dynamic models applied to ARX or transfer-function model structures. Crucially, the approach proposes an effective model structure identification method using a novel Information Criterion (IC) taking into account model complexity in terms of the number of states involved. In ESDP, model structure involves not only the model orders, but also selection of the states driving the parameters, which effectively prevents the use of most current IC. This leads to a powerful methodology for investigating nonlinear systems building on the Data-Based Mechanistic (DBM) philosophy of Young and expanding the applications of the existing DBM methods. The methodologies presented are tested and demonstrated on both simulated data and on high frequency hydrological observations, showing how structure identification leads to discovery of dynamic relationships between system variables. •Extension of Data-Based Mechanistic modelling of non-linear systems.•Identification of model structure for a significant class of non-linear systems.•State-Dependent Parameters extended for irregularly spaced data.•Application to environmental systems – water quality dynamics.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2018.02.015</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computer simulation ; Data analysis ; Data based mechanistic modelling ; Dynamic models ; Dynamical systems ; Hydrologic data ; Hydrologic modeling ; Hydrologic models ; Hydrological modelling ; Hydrology ; Information Criterion ; Model identification ; Modelling ; Nonlinear dynamic systems ; Nonlinear systems ; Parameter identification ; State-dependent parameters</subject><ispartof>Environmental modelling &amp; software : with environment data news, 2018-06, Vol.104, p.81-93</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-d553cbea0ad479d7b56b684b9a3894208dab9ee57000f35d5c926a10a08a98613</citedby><cites>FETCH-LOGICAL-c384t-d553cbea0ad479d7b56b684b9a3894208dab9ee57000f35d5c926a10a08a98613</cites><orcidid>0000-0003-1655-844X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mindham, David A.</creatorcontrib><creatorcontrib>Tych, Wlodzimierz</creatorcontrib><creatorcontrib>Chappell, Nick A.</creatorcontrib><title>Extended State Dependent Parameter modelling with a Data-Based Mechanistic approach to nonlinear model structure identification</title><title>Environmental modelling &amp; software : with environment data news</title><description>A unified approach to Multiple and single State Dependent Parameter modelling, termed Extended State Dependent Parameters (ESDP) modelling, of nonlinear dynamic systems described by time-varying dynamic models applied to ARX or transfer-function model structures. Crucially, the approach proposes an effective model structure identification method using a novel Information Criterion (IC) taking into account model complexity in terms of the number of states involved. In ESDP, model structure involves not only the model orders, but also selection of the states driving the parameters, which effectively prevents the use of most current IC. This leads to a powerful methodology for investigating nonlinear systems building on the Data-Based Mechanistic (DBM) philosophy of Young and expanding the applications of the existing DBM methods. The methodologies presented are tested and demonstrated on both simulated data and on high frequency hydrological observations, showing how structure identification leads to discovery of dynamic relationships between system variables. •Extension of Data-Based Mechanistic modelling of non-linear systems.•Identification of model structure for a significant class of non-linear systems.•State-Dependent Parameters extended for irregularly spaced data.•Application to environmental systems – water quality dynamics.</description><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Data based mechanistic modelling</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Hydrologic data</subject><subject>Hydrologic modeling</subject><subject>Hydrologic models</subject><subject>Hydrological modelling</subject><subject>Hydrology</subject><subject>Information Criterion</subject><subject>Model identification</subject><subject>Modelling</subject><subject>Nonlinear dynamic systems</subject><subject>Nonlinear systems</subject><subject>Parameter identification</subject><subject>State-dependent parameters</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYsoeP0JQsDn1iRt2vRJvCsoCupzmCZTN8tusiZZL0_-dbPsvvs0M3C-MzOnKI4ZrRhl7em0QvcZ_ZgqTpmsKK8oE1vFHpNdXbYdb7dzX7dNKZngu8V-jFNKs4Q3e8Xv9XdCZ9CQlwQJyRUuVqNL5BkCzDFhIHNvcDaz7p182TQhQK4gQXkBMVOPqCfgbExWE1gsggc9IckT510mEDY0iSksdVoGJHblbkerIVnvDoudEWYRjzb1oHi7uX69vCsfnm7vL88fSl3LJpVGiFoPCBRM0_WmG0Q7tLIZeqhl33AqDQw9oujyY2MtjNA9b4FRoBJ62bL6oDhZ--YTP5YYk5r6ZXB5peK0qwVjveBZJdYqHXyMAUe1CHYO4UcxqlZZq6naZK1WWSvKVQ4yc2drDvMLnxaDitqi02hsQJ2U8fYfhz8Vt4zp</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Mindham, David A.</creator><creator>Tych, Wlodzimierz</creator><creator>Chappell, Nick A.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1655-844X</orcidid></search><sort><creationdate>201806</creationdate><title>Extended State Dependent Parameter modelling with a Data-Based Mechanistic approach to nonlinear model structure identification</title><author>Mindham, David A. ; Tych, Wlodzimierz ; Chappell, Nick A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-d553cbea0ad479d7b56b684b9a3894208dab9ee57000f35d5c926a10a08a98613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Data based mechanistic modelling</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Hydrologic data</topic><topic>Hydrologic modeling</topic><topic>Hydrologic models</topic><topic>Hydrological modelling</topic><topic>Hydrology</topic><topic>Information Criterion</topic><topic>Model identification</topic><topic>Modelling</topic><topic>Nonlinear dynamic systems</topic><topic>Nonlinear systems</topic><topic>Parameter identification</topic><topic>State-dependent parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mindham, David A.</creatorcontrib><creatorcontrib>Tych, Wlodzimierz</creatorcontrib><creatorcontrib>Chappell, Nick A.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mindham, David A.</au><au>Tych, Wlodzimierz</au><au>Chappell, Nick A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended State Dependent Parameter modelling with a Data-Based Mechanistic approach to nonlinear model structure identification</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2018-06</date><risdate>2018</risdate><volume>104</volume><spage>81</spage><epage>93</epage><pages>81-93</pages><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>A unified approach to Multiple and single State Dependent Parameter modelling, termed Extended State Dependent Parameters (ESDP) modelling, of nonlinear dynamic systems described by time-varying dynamic models applied to ARX or transfer-function model structures. Crucially, the approach proposes an effective model structure identification method using a novel Information Criterion (IC) taking into account model complexity in terms of the number of states involved. In ESDP, model structure involves not only the model orders, but also selection of the states driving the parameters, which effectively prevents the use of most current IC. This leads to a powerful methodology for investigating nonlinear systems building on the Data-Based Mechanistic (DBM) philosophy of Young and expanding the applications of the existing DBM methods. The methodologies presented are tested and demonstrated on both simulated data and on high frequency hydrological observations, showing how structure identification leads to discovery of dynamic relationships between system variables. •Extension of Data-Based Mechanistic modelling of non-linear systems.•Identification of model structure for a significant class of non-linear systems.•State-Dependent Parameters extended for irregularly spaced data.•Application to environmental systems – water quality dynamics.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2018.02.015</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1655-844X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2018-06, Vol.104, p.81-93
issn 1364-8152
1873-6726
language eng
recordid cdi_proquest_journals_2073511952
source ScienceDirect Freedom Collection
subjects Computer simulation
Data analysis
Data based mechanistic modelling
Dynamic models
Dynamical systems
Hydrologic data
Hydrologic modeling
Hydrologic models
Hydrological modelling
Hydrology
Information Criterion
Model identification
Modelling
Nonlinear dynamic systems
Nonlinear systems
Parameter identification
State-dependent parameters
title Extended State Dependent Parameter modelling with a Data-Based Mechanistic approach to nonlinear model structure identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20State%20Dependent%20Parameter%20modelling%20with%20a%20Data-Based%20Mechanistic%20approach%20to%20nonlinear%20model%20structure%20identification&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Mindham,%20David%20A.&rft.date=2018-06&rft.volume=104&rft.spage=81&rft.epage=93&rft.pages=81-93&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2018.02.015&rft_dat=%3Cproquest_cross%3E2073511952%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-d553cbea0ad479d7b56b684b9a3894208dab9ee57000f35d5c926a10a08a98613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073511952&rft_id=info:pmid/&rfr_iscdi=true