Loading…
Flux predictions of high-energy neutrinos from pulsars
Young, rapidly rotating neutron stars could accelerate ions from their surfaces to energies of ∼1 PeV. If protons reach such energies, they will produce pions (with low probability) through resonant scattering with X-rays from the stellar surface. The pions subsequently decay to produce muon neutrin...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2006-09, Vol.371 (1), p.375-379 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Young, rapidly rotating neutron stars could accelerate ions from their surfaces to energies of ∼1 PeV. If protons reach such energies, they will produce pions (with low probability) through resonant scattering with X-rays from the stellar surface. The pions subsequently decay to produce muon neutrinos. Here, we calculate the energy spectrum of muon neutrinos, and estimate the event rates at Earth. The spectrum consists of a sharp rise at ∼50 TeV, corresponding to the onset of the resonance, above which the flux drops with neutrino energy as ε−2ν up to an upper energy cut-off that is determined by either kinematics or the maximum energy to which protons are accelerated. We estimate event rates as high as 10–100 km−2 yr−1 from some candidates, a flux that would be easily detected by IceCube. Lack of detection would allow constraints on the energetics of the poorly understood pulsar magnetosphere. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1111/j.1365-2966.2006.10665.x |