Loading…
Drowsy Driver Detection by EEG Analysis Using Fast Fourier Transform
In this paper, we try to analyze drowsiness which is a major factor in many traffic accidents due to the clear decline in the attention and recognition of danger drivers. The object of this work is to develop an automatic method to evaluate the drowsiness stage by analysis of EEG signals records. Th...
Saved in:
Published in: | arXiv.org 2018-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mejdi Ben Dkhil Wali, Ali Alimi, Adel M |
description | In this paper, we try to analyze drowsiness which is a major factor in many traffic accidents due to the clear decline in the attention and recognition of danger drivers. The object of this work is to develop an automatic method to evaluate the drowsiness stage by analysis of EEG signals records. The absolute band power of the EEG signal was computed by taking the Fast Fourier Transform (FFT) of the time series signal. Finally, the algorithm developed in this work has been improved on eight samples from the Physionet sleep-EDF database. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073558204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073558204</sourcerecordid><originalsourceid>FETCH-proquest_journals_20735582043</originalsourceid><addsrcrecordid>eNqNjEEOgjAQABsTE4nyh008k9SWCldjQR-AZ1JNMSXY6m7R8Hs5-ABPc5mZBUuElLuszIVYsZSo55yLfSGUkgnTGsOHJtDo3hZB22hv0QUP1wmq6gQHb4aJHMGFnL9DbShCHUZ0s9yg8dQFfGzYsjMD2fTHNdvWVXM8Z08Mr9FSbPs5mU_UCl5IpUrBc_mf9QXlKjng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073558204</pqid></control><display><type>article</type><title>Drowsy Driver Detection by EEG Analysis Using Fast Fourier Transform</title><source>Publicly Available Content Database</source><creator>Mejdi Ben Dkhil ; Wali, Ali ; Alimi, Adel M</creator><creatorcontrib>Mejdi Ben Dkhil ; Wali, Ali ; Alimi, Adel M</creatorcontrib><description>In this paper, we try to analyze drowsiness which is a major factor in many traffic accidents due to the clear decline in the attention and recognition of danger drivers. The object of this work is to develop an automatic method to evaluate the drowsiness stage by analysis of EEG signals records. The absolute band power of the EEG signal was computed by taking the Fast Fourier Transform (FFT) of the time series signal. Finally, the algorithm developed in this work has been improved on eight samples from the Physionet sleep-EDF database.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Electroencephalography ; Fast Fourier transformations ; Fourier transforms ; Hazards ; Object recognition ; Sleep ; Traffic accidents</subject><ispartof>arXiv.org, 2018-06</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073558204?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Mejdi Ben Dkhil</creatorcontrib><creatorcontrib>Wali, Ali</creatorcontrib><creatorcontrib>Alimi, Adel M</creatorcontrib><title>Drowsy Driver Detection by EEG Analysis Using Fast Fourier Transform</title><title>arXiv.org</title><description>In this paper, we try to analyze drowsiness which is a major factor in many traffic accidents due to the clear decline in the attention and recognition of danger drivers. The object of this work is to develop an automatic method to evaluate the drowsiness stage by analysis of EEG signals records. The absolute band power of the EEG signal was computed by taking the Fast Fourier Transform (FFT) of the time series signal. Finally, the algorithm developed in this work has been improved on eight samples from the Physionet sleep-EDF database.</description><subject>Algorithms</subject><subject>Electroencephalography</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Hazards</subject><subject>Object recognition</subject><subject>Sleep</subject><subject>Traffic accidents</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEEOgjAQABsTE4nyh008k9SWCldjQR-AZ1JNMSXY6m7R8Hs5-ABPc5mZBUuElLuszIVYsZSo55yLfSGUkgnTGsOHJtDo3hZB22hv0QUP1wmq6gQHb4aJHMGFnL9DbShCHUZ0s9yg8dQFfGzYsjMD2fTHNdvWVXM8Z08Mr9FSbPs5mU_UCl5IpUrBc_mf9QXlKjng</recordid><startdate>20180606</startdate><enddate>20180606</enddate><creator>Mejdi Ben Dkhil</creator><creator>Wali, Ali</creator><creator>Alimi, Adel M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180606</creationdate><title>Drowsy Driver Detection by EEG Analysis Using Fast Fourier Transform</title><author>Mejdi Ben Dkhil ; Wali, Ali ; Alimi, Adel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20735582043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Electroencephalography</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Hazards</topic><topic>Object recognition</topic><topic>Sleep</topic><topic>Traffic accidents</topic><toplevel>online_resources</toplevel><creatorcontrib>Mejdi Ben Dkhil</creatorcontrib><creatorcontrib>Wali, Ali</creatorcontrib><creatorcontrib>Alimi, Adel M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mejdi Ben Dkhil</au><au>Wali, Ali</au><au>Alimi, Adel M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Drowsy Driver Detection by EEG Analysis Using Fast Fourier Transform</atitle><jtitle>arXiv.org</jtitle><date>2018-06-06</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In this paper, we try to analyze drowsiness which is a major factor in many traffic accidents due to the clear decline in the attention and recognition of danger drivers. The object of this work is to develop an automatic method to evaluate the drowsiness stage by analysis of EEG signals records. The absolute band power of the EEG signal was computed by taking the Fast Fourier Transform (FFT) of the time series signal. Finally, the algorithm developed in this work has been improved on eight samples from the Physionet sleep-EDF database.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073558204 |
source | Publicly Available Content Database |
subjects | Algorithms Electroencephalography Fast Fourier transformations Fourier transforms Hazards Object recognition Sleep Traffic accidents |
title | Drowsy Driver Detection by EEG Analysis Using Fast Fourier Transform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Drowsy%20Driver%20Detection%20by%20EEG%20Analysis%20Using%20Fast%20Fourier%20Transform&rft.jtitle=arXiv.org&rft.au=Mejdi%20Ben%20Dkhil&rft.date=2018-06-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073558204%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20735582043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073558204&rft_id=info:pmid/&rfr_iscdi=true |