Loading…

On the relation between the Schmidt and Kennicutt–Schmidt star formation laws and its implications for numerical simulations

When averaged over large scales, star formation in galaxies is observed to follow the empirical Kennicutt–Schmidt (KS) law for surface densities above a constant threshold. While the observed law involves surface densities, theoretical models and simulations generally work with volume density laws (...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2008-01, Vol.383 (3), p.1210-1222
Main Authors: Schaye, Joop, Dalla Vecchia, Claudio
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5209-1e5faa86e287594a883a13bde4286a742254bc39bb3e7c0bd5def716fe79601d3
cites
container_end_page 1222
container_issue 3
container_start_page 1210
container_title Monthly notices of the Royal Astronomical Society
container_volume 383
creator Schaye, Joop
Dalla Vecchia, Claudio
description When averaged over large scales, star formation in galaxies is observed to follow the empirical Kennicutt–Schmidt (KS) law for surface densities above a constant threshold. While the observed law involves surface densities, theoretical models and simulations generally work with volume density laws (i.e. Schmidt laws). We derive analytic relations between star formation laws expressed in terms of surface densities, volume densities, and pressures and we show how these relations depend on parameters such as the effective equation of state of the multiphase interstellar medium. Our analytic relations enable us to implement observed surface density laws into simulations. Because the parameters of our prescription for star formation are observables, we are not free to tune them to match the observations. We test our theoretical framework using high-resolution simulations of isolated disc galaxies that assume an effective equation of state for the multiphase interstellar medium. We are able to reproduce the star formation threshold and both the slope and the normalization of arbitrary input KS laws without tuning any parameters and with very little scatter, even for unstable galaxies and even if we use poor numerical resolution. Moreover, we can do so for arbitrary effective equations of state. Our prescription therefore enables simulations of galaxies to bypass our current inability to simulate the formation of stars. On the other hand, the fact that we can reproduce arbitrary input thresholds and KS laws, rather than just the particular ones picked out by nature, indicates that simulations that lack the physics and/or resolution to simulate the multiphase interstellar medium can only provide limited insight into the origin of the observed star formation laws.
doi_str_mv 10.1111/j.1365-2966.2007.12639.x
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_207355880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2007.12639.x</oup_id><sourcerecordid>1424511651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5209-1e5faa86e287594a883a13bde4286a742254bc39bb3e7c0bd5def716fe79601d3</originalsourceid><addsrcrecordid>eNp1Uctu1DAUtRBIDIV_sCqxTPAjfmSDVA2PIkqrQltV3VhOcqN6msdgO5rpBvEP_cN-SZNJKQuEN7bO61r3IIQpSel43q1SyqVIWC5lyghRKWWS5-n2GVo8Ec_RghAuEq0ofYlehbAihGScyQX6ddLheA3YQ2Oj6ztcQNwAzOCP8rp1VcS2q_BX6DpXDjHe_777g4doPa57387Wxm7CTutiwK5dN67cEWHS4G5owY9Ig4Nrh3laeI1e1LYJ8Obx3kPnnz6eLQ-To5PPX5YHR0kpGMkTCqK2VktgWok8s1pzS3lRQca0tCpjTGRFyfOi4KBKUlSiglpRWYPKJaEV30P7c-7a9z8HCNGs-sF340jDiOJCaE1G0dtHkQ3jP2tvu9IFs_autf7W0DzXGaPZqHs_6zaugdu_PDFTI2ZlpsWbafFmasTsGjFb8-34--45BvA5oB_W_7En_9hHVzK7XIiwffJZf2Ok4kqYw8srQ5cX9Pj0AzVL_gCYBaKq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207355880</pqid></control><display><type>article</type><title>On the relation between the Schmidt and Kennicutt–Schmidt star formation laws and its implications for numerical simulations</title><source>Open Access: Oxford University Press Open Journals</source><source>Elektronische Zeitschriftenbibliothek</source><creator>Schaye, Joop ; Dalla Vecchia, Claudio</creator><creatorcontrib>Schaye, Joop ; Dalla Vecchia, Claudio</creatorcontrib><description>When averaged over large scales, star formation in galaxies is observed to follow the empirical Kennicutt–Schmidt (KS) law for surface densities above a constant threshold. While the observed law involves surface densities, theoretical models and simulations generally work with volume density laws (i.e. Schmidt laws). We derive analytic relations between star formation laws expressed in terms of surface densities, volume densities, and pressures and we show how these relations depend on parameters such as the effective equation of state of the multiphase interstellar medium. Our analytic relations enable us to implement observed surface density laws into simulations. Because the parameters of our prescription for star formation are observables, we are not free to tune them to match the observations. We test our theoretical framework using high-resolution simulations of isolated disc galaxies that assume an effective equation of state for the multiphase interstellar medium. We are able to reproduce the star formation threshold and both the slope and the normalization of arbitrary input KS laws without tuning any parameters and with very little scatter, even for unstable galaxies and even if we use poor numerical resolution. Moreover, we can do so for arbitrary effective equations of state. Our prescription therefore enables simulations of galaxies to bypass our current inability to simulate the formation of stars. On the other hand, the fact that we can reproduce arbitrary input thresholds and KS laws, rather than just the particular ones picked out by nature, indicates that simulations that lack the physics and/or resolution to simulate the multiphase interstellar medium can only provide limited insight into the origin of the observed star formation laws.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2007.12639.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology ; galaxies: evolution ; galaxies: formation ; galaxies: ISM ; Mathematical models ; Simulation ; Star &amp; galaxy formation ; stars: formation ; Theory</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2008-01, Vol.383 (3), p.1210-1222</ispartof><rights>2007 The Authors. Journal compilation © 2007 RAS 2007</rights><rights>2007 The Authors. Journal compilation © 2007 RAS</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5209-1e5faa86e287594a883a13bde4286a742254bc39bb3e7c0bd5def716fe79601d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19984214$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schaye, Joop</creatorcontrib><creatorcontrib>Dalla Vecchia, Claudio</creatorcontrib><title>On the relation between the Schmidt and Kennicutt–Schmidt star formation laws and its implications for numerical simulations</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>When averaged over large scales, star formation in galaxies is observed to follow the empirical Kennicutt–Schmidt (KS) law for surface densities above a constant threshold. While the observed law involves surface densities, theoretical models and simulations generally work with volume density laws (i.e. Schmidt laws). We derive analytic relations between star formation laws expressed in terms of surface densities, volume densities, and pressures and we show how these relations depend on parameters such as the effective equation of state of the multiphase interstellar medium. Our analytic relations enable us to implement observed surface density laws into simulations. Because the parameters of our prescription for star formation are observables, we are not free to tune them to match the observations. We test our theoretical framework using high-resolution simulations of isolated disc galaxies that assume an effective equation of state for the multiphase interstellar medium. We are able to reproduce the star formation threshold and both the slope and the normalization of arbitrary input KS laws without tuning any parameters and with very little scatter, even for unstable galaxies and even if we use poor numerical resolution. Moreover, we can do so for arbitrary effective equations of state. Our prescription therefore enables simulations of galaxies to bypass our current inability to simulate the formation of stars. On the other hand, the fact that we can reproduce arbitrary input thresholds and KS laws, rather than just the particular ones picked out by nature, indicates that simulations that lack the physics and/or resolution to simulate the multiphase interstellar medium can only provide limited insight into the origin of the observed star formation laws.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>galaxies: evolution</subject><subject>galaxies: formation</subject><subject>galaxies: ISM</subject><subject>Mathematical models</subject><subject>Simulation</subject><subject>Star &amp; galaxy formation</subject><subject>stars: formation</subject><subject>Theory</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1Uctu1DAUtRBIDIV_sCqxTPAjfmSDVA2PIkqrQltV3VhOcqN6msdgO5rpBvEP_cN-SZNJKQuEN7bO61r3IIQpSel43q1SyqVIWC5lyghRKWWS5-n2GVo8Ec_RghAuEq0ofYlehbAihGScyQX6ddLheA3YQ2Oj6ztcQNwAzOCP8rp1VcS2q_BX6DpXDjHe_777g4doPa57387Wxm7CTutiwK5dN67cEWHS4G5owY9Ig4Nrh3laeI1e1LYJ8Obx3kPnnz6eLQ-To5PPX5YHR0kpGMkTCqK2VktgWok8s1pzS3lRQca0tCpjTGRFyfOi4KBKUlSiglpRWYPKJaEV30P7c-7a9z8HCNGs-sF340jDiOJCaE1G0dtHkQ3jP2tvu9IFs_autf7W0DzXGaPZqHs_6zaugdu_PDFTI2ZlpsWbafFmasTsGjFb8-34--45BvA5oB_W_7En_9hHVzK7XIiwffJZf2Ok4kqYw8srQ5cX9Pj0AzVL_gCYBaKq</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Schaye, Joop</creator><creator>Dalla Vecchia, Claudio</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200801</creationdate><title>On the relation between the Schmidt and Kennicutt–Schmidt star formation laws and its implications for numerical simulations</title><author>Schaye, Joop ; Dalla Vecchia, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5209-1e5faa86e287594a883a13bde4286a742254bc39bb3e7c0bd5def716fe79601d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>galaxies: evolution</topic><topic>galaxies: formation</topic><topic>galaxies: ISM</topic><topic>Mathematical models</topic><topic>Simulation</topic><topic>Star &amp; galaxy formation</topic><topic>stars: formation</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaye, Joop</creatorcontrib><creatorcontrib>Dalla Vecchia, Claudio</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaye, Joop</au><au>Dalla Vecchia, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the relation between the Schmidt and Kennicutt–Schmidt star formation laws and its implications for numerical simulations</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><date>2008-01</date><risdate>2008</risdate><volume>383</volume><issue>3</issue><spage>1210</spage><epage>1222</epage><pages>1210-1222</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>When averaged over large scales, star formation in galaxies is observed to follow the empirical Kennicutt–Schmidt (KS) law for surface densities above a constant threshold. While the observed law involves surface densities, theoretical models and simulations generally work with volume density laws (i.e. Schmidt laws). We derive analytic relations between star formation laws expressed in terms of surface densities, volume densities, and pressures and we show how these relations depend on parameters such as the effective equation of state of the multiphase interstellar medium. Our analytic relations enable us to implement observed surface density laws into simulations. Because the parameters of our prescription for star formation are observables, we are not free to tune them to match the observations. We test our theoretical framework using high-resolution simulations of isolated disc galaxies that assume an effective equation of state for the multiphase interstellar medium. We are able to reproduce the star formation threshold and both the slope and the normalization of arbitrary input KS laws without tuning any parameters and with very little scatter, even for unstable galaxies and even if we use poor numerical resolution. Moreover, we can do so for arbitrary effective equations of state. Our prescription therefore enables simulations of galaxies to bypass our current inability to simulate the formation of stars. On the other hand, the fact that we can reproduce arbitrary input thresholds and KS laws, rather than just the particular ones picked out by nature, indicates that simulations that lack the physics and/or resolution to simulate the multiphase interstellar medium can only provide limited insight into the origin of the observed star formation laws.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2007.12639.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2008-01, Vol.383 (3), p.1210-1222
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_journals_207355880
source Open Access: Oxford University Press Open Journals; Elektronische Zeitschriftenbibliothek
subjects Astronomy
Earth, ocean, space
Exact sciences and technology
galaxies: evolution
galaxies: formation
galaxies: ISM
Mathematical models
Simulation
Star & galaxy formation
stars: formation
Theory
title On the relation between the Schmidt and Kennicutt–Schmidt star formation laws and its implications for numerical simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20relation%20between%20the%20Schmidt%20and%20Kennicutt%E2%80%93Schmidt%20star%20formation%20laws%20and%20its%20implications%20for%20numerical%20simulations&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Schaye,%20Joop&rft.date=2008-01&rft.volume=383&rft.issue=3&rft.spage=1210&rft.epage=1222&rft.pages=1210-1222&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2007.12639.x&rft_dat=%3Cproquest_pasca%3E1424511651%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5209-1e5faa86e287594a883a13bde4286a742254bc39bb3e7c0bd5def716fe79601d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=207355880&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2007.12639.x&rfr_iscdi=true