Loading…
Minimal Degree and (k, m)-Pancyclic Ordered Graphs
Given positive integers k less than or equal to m less than or equal to n, a graph G of order n is (k,m)-pancyclic ordered if for any set of k vertices of G and any integer r with m less than or equal to r less than or equal to n, there is a cycle of length r encountering the k vertices in a specifi...
Saved in:
Published in: | Graphs and combinatorics 2005-06, Vol.21 (2), p.197-211 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c272t-2bbf3acca6a856b12738cdb4eade1ba35a6de9cfbe1bc49f1f295d64307c93e03 |
---|---|
cites | |
container_end_page | 211 |
container_issue | 2 |
container_start_page | 197 |
container_title | Graphs and combinatorics |
container_volume | 21 |
creator | Faudree, Ralph J. Gould, Ronald J. Jacobson, Michael S. Lesniak, Linda |
description | Given positive integers k less than or equal to m less than or equal to n, a graph G of order n is (k,m)-pancyclic ordered if for any set of k vertices of G and any integer r with m less than or equal to r less than or equal to n, there is a cycle of length r encountering the k vertices in a specified order. Minimum degree conditions that imply a graph of sufficiently large order n is (k,m)-pancylic ordered are proved. Examples showing that these constraints are best possible are also provided. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00373-005-0604-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207356761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>852756761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-2bbf3acca6a856b12738cdb4eade1ba35a6de9cfbe1bc49f1f295d64307c93e03</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoOFZ_gLvBlYLR9_LZLKVqFSp1oeuQSTI6tZ0Zk3bRf--UcXW5cHiPewi5RLhDAH2fAbjmFEBSUCCoPCIFCi6pNCiOSQEGkQKiOSVnOa9gAFFAQdhb0zYbty4f41eKsXRtKK9_bsvNDX13rd_7dePLZQoxxVDOk-u_8zk5qd06x4v_nJDP56eP2QtdLOevs4cF9UyzLWVVVXPnvVNuKlWFTPOpD5WILkSsHJdOhWh8XQ3NC1NjzYwMSnDQ3vAIfEKuxrt96n53MW_tqtuldnhpGWgulVY4QDhCPnU5p1jbPg170t4i2IMZO5qxw2B7MGMl_wNIk1Tj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207356761</pqid></control><display><type>article</type><title>Minimal Degree and (k, m)-Pancyclic Ordered Graphs</title><source>Springer Nature</source><creator>Faudree, Ralph J. ; Gould, Ronald J. ; Jacobson, Michael S. ; Lesniak, Linda</creator><creatorcontrib>Faudree, Ralph J. ; Gould, Ronald J. ; Jacobson, Michael S. ; Lesniak, Linda</creatorcontrib><description>Given positive integers k less than or equal to m less than or equal to n, a graph G of order n is (k,m)-pancyclic ordered if for any set of k vertices of G and any integer r with m less than or equal to r less than or equal to n, there is a cycle of length r encountering the k vertices in a specified order. Minimum degree conditions that imply a graph of sufficiently large order n is (k,m)-pancylic ordered are proved. Examples showing that these constraints are best possible are also provided. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-005-0604-5</identifier><language>eng</language><publisher>Tokyo: Springer Nature B.V</publisher><subject>Graph algorithms</subject><ispartof>Graphs and combinatorics, 2005-06, Vol.21 (2), p.197-211</ispartof><rights>Springer-Verlag Tokyo 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-2bbf3acca6a856b12738cdb4eade1ba35a6de9cfbe1bc49f1f295d64307c93e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Faudree, Ralph J.</creatorcontrib><creatorcontrib>Gould, Ronald J.</creatorcontrib><creatorcontrib>Jacobson, Michael S.</creatorcontrib><creatorcontrib>Lesniak, Linda</creatorcontrib><title>Minimal Degree and (k, m)-Pancyclic Ordered Graphs</title><title>Graphs and combinatorics</title><description>Given positive integers k less than or equal to m less than or equal to n, a graph G of order n is (k,m)-pancyclic ordered if for any set of k vertices of G and any integer r with m less than or equal to r less than or equal to n, there is a cycle of length r encountering the k vertices in a specified order. Minimum degree conditions that imply a graph of sufficiently large order n is (k,m)-pancylic ordered are proved. Examples showing that these constraints are best possible are also provided. [PUBLICATION ABSTRACT]</description><subject>Graph algorithms</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEURYMoOFZ_gLvBlYLR9_LZLKVqFSp1oeuQSTI6tZ0Zk3bRf--UcXW5cHiPewi5RLhDAH2fAbjmFEBSUCCoPCIFCi6pNCiOSQEGkQKiOSVnOa9gAFFAQdhb0zYbty4f41eKsXRtKK9_bsvNDX13rd_7dePLZQoxxVDOk-u_8zk5qd06x4v_nJDP56eP2QtdLOevs4cF9UyzLWVVVXPnvVNuKlWFTPOpD5WILkSsHJdOhWh8XQ3NC1NjzYwMSnDQ3vAIfEKuxrt96n53MW_tqtuldnhpGWgulVY4QDhCPnU5p1jbPg170t4i2IMZO5qxw2B7MGMl_wNIk1Tj</recordid><startdate>200506</startdate><enddate>200506</enddate><creator>Faudree, Ralph J.</creator><creator>Gould, Ronald J.</creator><creator>Jacobson, Michael S.</creator><creator>Lesniak, Linda</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200506</creationdate><title>Minimal Degree and (k, m)-Pancyclic Ordered Graphs</title><author>Faudree, Ralph J. ; Gould, Ronald J. ; Jacobson, Michael S. ; Lesniak, Linda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-2bbf3acca6a856b12738cdb4eade1ba35a6de9cfbe1bc49f1f295d64307c93e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Graph algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faudree, Ralph J.</creatorcontrib><creatorcontrib>Gould, Ronald J.</creatorcontrib><creatorcontrib>Jacobson, Michael S.</creatorcontrib><creatorcontrib>Lesniak, Linda</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faudree, Ralph J.</au><au>Gould, Ronald J.</au><au>Jacobson, Michael S.</au><au>Lesniak, Linda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal Degree and (k, m)-Pancyclic Ordered Graphs</atitle><jtitle>Graphs and combinatorics</jtitle><date>2005-06</date><risdate>2005</risdate><volume>21</volume><issue>2</issue><spage>197</spage><epage>211</epage><pages>197-211</pages><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>Given positive integers k less than or equal to m less than or equal to n, a graph G of order n is (k,m)-pancyclic ordered if for any set of k vertices of G and any integer r with m less than or equal to r less than or equal to n, there is a cycle of length r encountering the k vertices in a specified order. Minimum degree conditions that imply a graph of sufficiently large order n is (k,m)-pancylic ordered are proved. Examples showing that these constraints are best possible are also provided. [PUBLICATION ABSTRACT]</abstract><cop>Tokyo</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00373-005-0604-5</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0911-0119 |
ispartof | Graphs and combinatorics, 2005-06, Vol.21 (2), p.197-211 |
issn | 0911-0119 1435-5914 |
language | eng |
recordid | cdi_proquest_journals_207356761 |
source | Springer Nature |
subjects | Graph algorithms |
title | Minimal Degree and (k, m)-Pancyclic Ordered Graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20Degree%20and%20(k,%20m)-Pancyclic%20Ordered%20Graphs&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Faudree,%20Ralph%20J.&rft.date=2005-06&rft.volume=21&rft.issue=2&rft.spage=197&rft.epage=211&rft.pages=197-211&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-005-0604-5&rft_dat=%3Cproquest_cross%3E852756761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c272t-2bbf3acca6a856b12738cdb4eade1ba35a6de9cfbe1bc49f1f295d64307c93e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=207356761&rft_id=info:pmid/&rfr_iscdi=true |