Loading…
Waterlike anomalies on the Bose-Hubbard Model
Although well-researched as a prototype Hamiltonian for strongly interacting quantum systems, the Bose-Hubbard model has not so far been explored as a fluid system with waterlike anomalies. In this work we show that this model supports, in the limit of a strongly localizing confining potential, dens...
Saved in:
Published in: | arXiv.org 2018-05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although well-researched as a prototype Hamiltonian for strongly interacting quantum systems, the Bose-Hubbard model has not so far been explored as a fluid system with waterlike anomalies. In this work we show that this model supports, in the limit of a strongly localizing confining potential, density anomalies which can be traced back to ground state (zero-temperature) phase transitions between different Mott insulators. This key finding opens a new pathway for theoretical and experimental studies of liquid water and, in particular, we propose a test of our predictions that can be readily implemented in a ultra-cold atom platform. |
---|---|
ISSN: | 2331-8422 |