Loading…

Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles

We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex part...

Full description

Saved in:
Bibliographic Details
Published in:Graphs and combinatorics 2007-10, Vol.23 (5), p.481-507
Main Authors: Aichholzer, O., Huemer, C., Kappes, S., Speckmann, B., Tóth, Cs. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-b5bfff807cddf8b444a1d8ac8b0485951d00d1adf673e4c0c88317d3768ce8863
cites cdi_FETCH-LOGICAL-c315t-b5bfff807cddf8b444a1d8ac8b0485951d00d1adf673e4c0c88317d3768ce8863
container_end_page 507
container_issue 5
container_start_page 481
container_title Graphs and combinatorics
container_volume 23
creator Aichholzer, O.
Huemer, C.
Kappes, S.
Speckmann, B.
Tóth, Cs. D.
description We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their complexity. Our upper bounds depend on new Ramsey-type results concerning disjoint empty convex k-gons in point sets. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00373-007-0752-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207360693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1368430531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-b5bfff807cddf8b444a1d8ac8b0485951d00d1adf673e4c0c88317d3768ce8863</originalsourceid><addsrcrecordid>eNo1kE1LAzEQQIMoWKs_wNvi2ehMk2yyR6mfIFiwnkM2H3VLu6nJtrb_3q3V07yBxww8Qi4RbhBA3mYAJhntkYIUI7o9IgPkTFBRIT8mA6gQKSBWp-Qs5zkACOQwIO_33sblKuama2Kbr4uJSd0_m9YV47jxqWlnufhuus9-bTd-W0ziYjfrnV9lkv3aRTpNjWlnC5_PyUkwi-wv_uaQfDw-TMfP9PXt6WV890otQ9HRWtQhBAXSOhdUzTk36JSxqgauRCXQATg0LpSSeW7BKsVQOiZLZb1SJRuSq8PdVYpfa587PY_r1PYv9QgkK6GsWC_hQbIp5px80KvULE3aaQS9T6cP6fQe9-n0lv0AzA5ihg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207360693</pqid></control><display><type>article</type><title>Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles</title><source>Springer Nature</source><creator>Aichholzer, O. ; Huemer, C. ; Kappes, S. ; Speckmann, B. ; Tóth, Cs. D.</creator><creatorcontrib>Aichholzer, O. ; Huemer, C. ; Kappes, S. ; Speckmann, B. ; Tóth, Cs. D.</creatorcontrib><description>We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their complexity. Our upper bounds depend on new Ramsey-type results concerning disjoint empty convex k-gons in point sets. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-007-0752-x</identifier><language>eng</language><publisher>Tokyo: Springer Nature B.V</publisher><subject>Computer science ; Geometry ; Graph theory ; Mathematics</subject><ispartof>Graphs and combinatorics, 2007-10, Vol.23 (5), p.481-507</ispartof><rights>Springer-Verlag Tokyo 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-b5bfff807cddf8b444a1d8ac8b0485951d00d1adf673e4c0c88317d3768ce8863</citedby><cites>FETCH-LOGICAL-c315t-b5bfff807cddf8b444a1d8ac8b0485951d00d1adf673e4c0c88317d3768ce8863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Aichholzer, O.</creatorcontrib><creatorcontrib>Huemer, C.</creatorcontrib><creatorcontrib>Kappes, S.</creatorcontrib><creatorcontrib>Speckmann, B.</creatorcontrib><creatorcontrib>Tóth, Cs. D.</creatorcontrib><title>Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles</title><title>Graphs and combinatorics</title><description>We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their complexity. Our upper bounds depend on new Ramsey-type results concerning disjoint empty convex k-gons in point sets. [PUBLICATION ABSTRACT]</description><subject>Computer science</subject><subject>Geometry</subject><subject>Graph theory</subject><subject>Mathematics</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEQQIMoWKs_wNvi2ehMk2yyR6mfIFiwnkM2H3VLu6nJtrb_3q3V07yBxww8Qi4RbhBA3mYAJhntkYIUI7o9IgPkTFBRIT8mA6gQKSBWp-Qs5zkACOQwIO_33sblKuama2Kbr4uJSd0_m9YV47jxqWlnufhuus9-bTd-W0ziYjfrnV9lkv3aRTpNjWlnC5_PyUkwi-wv_uaQfDw-TMfP9PXt6WV890otQ9HRWtQhBAXSOhdUzTk36JSxqgauRCXQATg0LpSSeW7BKsVQOiZLZb1SJRuSq8PdVYpfa587PY_r1PYv9QgkK6GsWC_hQbIp5px80KvULE3aaQS9T6cP6fQe9-n0lv0AzA5ihg</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Aichholzer, O.</creator><creator>Huemer, C.</creator><creator>Kappes, S.</creator><creator>Speckmann, B.</creator><creator>Tóth, Cs. D.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200710</creationdate><title>Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles</title><author>Aichholzer, O. ; Huemer, C. ; Kappes, S. ; Speckmann, B. ; Tóth, Cs. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-b5bfff807cddf8b444a1d8ac8b0485951d00d1adf673e4c0c88317d3768ce8863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computer science</topic><topic>Geometry</topic><topic>Graph theory</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aichholzer, O.</creatorcontrib><creatorcontrib>Huemer, C.</creatorcontrib><creatorcontrib>Kappes, S.</creatorcontrib><creatorcontrib>Speckmann, B.</creatorcontrib><creatorcontrib>Tóth, Cs. D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aichholzer, O.</au><au>Huemer, C.</au><au>Kappes, S.</au><au>Speckmann, B.</au><au>Tóth, Cs. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles</atitle><jtitle>Graphs and combinatorics</jtitle><date>2007-10</date><risdate>2007</risdate><volume>23</volume><issue>5</issue><spage>481</spage><epage>507</epage><pages>481-507</pages><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their complexity. Our upper bounds depend on new Ramsey-type results concerning disjoint empty convex k-gons in point sets. [PUBLICATION ABSTRACT]</abstract><cop>Tokyo</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00373-007-0752-x</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0911-0119
ispartof Graphs and combinatorics, 2007-10, Vol.23 (5), p.481-507
issn 0911-0119
1435-5914
language eng
recordid cdi_proquest_journals_207360693
source Springer Nature
subjects Computer science
Geometry
Graph theory
Mathematics
title Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decompositions,%20Partitions,%20and%20Coverings%20with%20Convex%20Polygons%20and%20Pseudo-Triangles&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Aichholzer,%20O.&rft.date=2007-10&rft.volume=23&rft.issue=5&rft.spage=481&rft.epage=507&rft.pages=481-507&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-007-0752-x&rft_dat=%3Cproquest_cross%3E1368430531%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-b5bfff807cddf8b444a1d8ac8b0485951d00d1adf673e4c0c88317d3768ce8863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=207360693&rft_id=info:pmid/&rfr_iscdi=true