Loading…

Electronic Properties of Substitutionally Boron-doped Graphene Nanoribbons on a Au(111) Surface

High quality graphene nanoribbons (GNRs) grown by on-surface synthesis strategies with atomic precision can be controllably doped by inserting heteroatoms or chemical groups in the molecular precursors. Here, we study the electronic structure of armchair GNRs substitutionally doped with di-boron moi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-06
Main Authors: Carbonell-Sanromà, Eduard, Garcia-Lekue, Aran, Corso, Martina, Vasseur, Guillaume, Brandimarte, Pedro, Lobo-Checa, Jorge, de Oteyza, Dimas G, Li, Jingcheng, Kawai, Shigeki, Saito, Shohei, Yamaguchi, Shigehiro, Ortega, J Enrique, Sánchez-Portal, Daniel, Pascual, Jose Ignacio
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Carbonell-Sanromà, Eduard
Garcia-Lekue, Aran
Corso, Martina
Vasseur, Guillaume
Brandimarte, Pedro
Lobo-Checa, Jorge
de Oteyza, Dimas G
Li, Jingcheng
Kawai, Shigeki
Saito, Shohei
Yamaguchi, Shigehiro
Ortega, J Enrique
Sánchez-Portal, Daniel
Pascual, Jose Ignacio
description High quality graphene nanoribbons (GNRs) grown by on-surface synthesis strategies with atomic precision can be controllably doped by inserting heteroatoms or chemical groups in the molecular precursors. Here, we study the electronic structure of armchair GNRs substitutionally doped with di-boron moieties at the center, through a combination of scanning tunneling spectroscopy, angle-resolved photoemission, and density functional theory simulations. Boron atoms appear with a small displacement towards the surface signaling their stronger interaction with the metal. We find two boron-rich flat bands emerging as impurity states inside the GNR band gap, one of them particularly broadened after its hybridization with the gold surface states. In addition, the boron atoms shift the conduction and valence bands of the pristine GNR away from the gap edge, and leave unaffected the bands above and below, which become the new frontier bands and have negligible boron character. This is due to the selective mixing of boron states with GNR bands according to their symmetry. Our results depict that the GNRs band structure can be tuned by modifying the separation between di-boron moieties.
doi_str_mv 10.48550/arxiv.1806.02385
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073620889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073620889</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-fcb5b8b2c32b600ce783aa79ebc48fb5c04ae64cde0d37cde6f6190ce1606b133</originalsourceid><addsrcrecordid>eNotjkFLwzAYhoMgOOZ-gLeAFz20fkmaND3OMacwVHD3kqQJdpRkJqnovzcwT8_leV5ehG4I1I3kHB5U_Bm_ayJB1ECZ5BdoQRkjlWwovUKrlI4AQEVLOWcL1G8na3IMfjT4PYaTjXm0CQeHP2ad8pjnPAavpukXP4aiVUNxBryL6vRpvcWvyoc4ah18iTxWeD3fEULuSx6dMvYaXTo1Jbv65xIdnraHzXO1f9u9bNb7SnHaVc5orqWmhlEtAIxtJVOq7aw2jXSaG2iUFY0ZLAysLRBOkK54RIDQhLEluj3PnmL4mm3K_THMsfxOPYWWCQpSduwP0d9WZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073620889</pqid></control><display><type>article</type><title>Electronic Properties of Substitutionally Boron-doped Graphene Nanoribbons on a Au(111) Surface</title><source>ProQuest Publicly Available Content database</source><creator>Carbonell-Sanromà, Eduard ; Garcia-Lekue, Aran ; Corso, Martina ; Vasseur, Guillaume ; Brandimarte, Pedro ; Lobo-Checa, Jorge ; de Oteyza, Dimas G ; Li, Jingcheng ; Kawai, Shigeki ; Saito, Shohei ; Yamaguchi, Shigehiro ; Ortega, J Enrique ; Sánchez-Portal, Daniel ; Pascual, Jose Ignacio</creator><creatorcontrib>Carbonell-Sanromà, Eduard ; Garcia-Lekue, Aran ; Corso, Martina ; Vasseur, Guillaume ; Brandimarte, Pedro ; Lobo-Checa, Jorge ; de Oteyza, Dimas G ; Li, Jingcheng ; Kawai, Shigeki ; Saito, Shohei ; Yamaguchi, Shigehiro ; Ortega, J Enrique ; Sánchez-Portal, Daniel ; Pascual, Jose Ignacio</creatorcontrib><description>High quality graphene nanoribbons (GNRs) grown by on-surface synthesis strategies with atomic precision can be controllably doped by inserting heteroatoms or chemical groups in the molecular precursors. Here, we study the electronic structure of armchair GNRs substitutionally doped with di-boron moieties at the center, through a combination of scanning tunneling spectroscopy, angle-resolved photoemission, and density functional theory simulations. Boron atoms appear with a small displacement towards the surface signaling their stronger interaction with the metal. We find two boron-rich flat bands emerging as impurity states inside the GNR band gap, one of them particularly broadened after its hybridization with the gold surface states. In addition, the boron atoms shift the conduction and valence bands of the pristine GNR away from the gap edge, and leave unaffected the bands above and below, which become the new frontier bands and have negligible boron character. This is due to the selective mixing of boron states with GNR bands according to their symmetry. Our results depict that the GNRs band structure can be tuned by modifying the separation between di-boron moieties.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1806.02385</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boron ; Density functional theory ; Electronic properties ; Electronic structure ; Gold ; Graphene ; Nanoribbons ; Organic chemistry ; Photoelectric emission</subject><ispartof>arXiv.org, 2018-06</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073620889?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Carbonell-Sanromà, Eduard</creatorcontrib><creatorcontrib>Garcia-Lekue, Aran</creatorcontrib><creatorcontrib>Corso, Martina</creatorcontrib><creatorcontrib>Vasseur, Guillaume</creatorcontrib><creatorcontrib>Brandimarte, Pedro</creatorcontrib><creatorcontrib>Lobo-Checa, Jorge</creatorcontrib><creatorcontrib>de Oteyza, Dimas G</creatorcontrib><creatorcontrib>Li, Jingcheng</creatorcontrib><creatorcontrib>Kawai, Shigeki</creatorcontrib><creatorcontrib>Saito, Shohei</creatorcontrib><creatorcontrib>Yamaguchi, Shigehiro</creatorcontrib><creatorcontrib>Ortega, J Enrique</creatorcontrib><creatorcontrib>Sánchez-Portal, Daniel</creatorcontrib><creatorcontrib>Pascual, Jose Ignacio</creatorcontrib><title>Electronic Properties of Substitutionally Boron-doped Graphene Nanoribbons on a Au(111) Surface</title><title>arXiv.org</title><description>High quality graphene nanoribbons (GNRs) grown by on-surface synthesis strategies with atomic precision can be controllably doped by inserting heteroatoms or chemical groups in the molecular precursors. Here, we study the electronic structure of armchair GNRs substitutionally doped with di-boron moieties at the center, through a combination of scanning tunneling spectroscopy, angle-resolved photoemission, and density functional theory simulations. Boron atoms appear with a small displacement towards the surface signaling their stronger interaction with the metal. We find two boron-rich flat bands emerging as impurity states inside the GNR band gap, one of them particularly broadened after its hybridization with the gold surface states. In addition, the boron atoms shift the conduction and valence bands of the pristine GNR away from the gap edge, and leave unaffected the bands above and below, which become the new frontier bands and have negligible boron character. This is due to the selective mixing of boron states with GNR bands according to their symmetry. Our results depict that the GNRs band structure can be tuned by modifying the separation between di-boron moieties.</description><subject>Boron</subject><subject>Density functional theory</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>Gold</subject><subject>Graphene</subject><subject>Nanoribbons</subject><subject>Organic chemistry</subject><subject>Photoelectric emission</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjkFLwzAYhoMgOOZ-gLeAFz20fkmaND3OMacwVHD3kqQJdpRkJqnovzcwT8_leV5ehG4I1I3kHB5U_Bm_ayJB1ECZ5BdoQRkjlWwovUKrlI4AQEVLOWcL1G8na3IMfjT4PYaTjXm0CQeHP2ad8pjnPAavpukXP4aiVUNxBryL6vRpvcWvyoc4ah18iTxWeD3fEULuSx6dMvYaXTo1Jbv65xIdnraHzXO1f9u9bNb7SnHaVc5orqWmhlEtAIxtJVOq7aw2jXSaG2iUFY0ZLAysLRBOkK54RIDQhLEluj3PnmL4mm3K_THMsfxOPYWWCQpSduwP0d9WZg</recordid><startdate>20180606</startdate><enddate>20180606</enddate><creator>Carbonell-Sanromà, Eduard</creator><creator>Garcia-Lekue, Aran</creator><creator>Corso, Martina</creator><creator>Vasseur, Guillaume</creator><creator>Brandimarte, Pedro</creator><creator>Lobo-Checa, Jorge</creator><creator>de Oteyza, Dimas G</creator><creator>Li, Jingcheng</creator><creator>Kawai, Shigeki</creator><creator>Saito, Shohei</creator><creator>Yamaguchi, Shigehiro</creator><creator>Ortega, J Enrique</creator><creator>Sánchez-Portal, Daniel</creator><creator>Pascual, Jose Ignacio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180606</creationdate><title>Electronic Properties of Substitutionally Boron-doped Graphene Nanoribbons on a Au(111) Surface</title><author>Carbonell-Sanromà, Eduard ; Garcia-Lekue, Aran ; Corso, Martina ; Vasseur, Guillaume ; Brandimarte, Pedro ; Lobo-Checa, Jorge ; de Oteyza, Dimas G ; Li, Jingcheng ; Kawai, Shigeki ; Saito, Shohei ; Yamaguchi, Shigehiro ; Ortega, J Enrique ; Sánchez-Portal, Daniel ; Pascual, Jose Ignacio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-fcb5b8b2c32b600ce783aa79ebc48fb5c04ae64cde0d37cde6f6190ce1606b133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boron</topic><topic>Density functional theory</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>Gold</topic><topic>Graphene</topic><topic>Nanoribbons</topic><topic>Organic chemistry</topic><topic>Photoelectric emission</topic><toplevel>online_resources</toplevel><creatorcontrib>Carbonell-Sanromà, Eduard</creatorcontrib><creatorcontrib>Garcia-Lekue, Aran</creatorcontrib><creatorcontrib>Corso, Martina</creatorcontrib><creatorcontrib>Vasseur, Guillaume</creatorcontrib><creatorcontrib>Brandimarte, Pedro</creatorcontrib><creatorcontrib>Lobo-Checa, Jorge</creatorcontrib><creatorcontrib>de Oteyza, Dimas G</creatorcontrib><creatorcontrib>Li, Jingcheng</creatorcontrib><creatorcontrib>Kawai, Shigeki</creatorcontrib><creatorcontrib>Saito, Shohei</creatorcontrib><creatorcontrib>Yamaguchi, Shigehiro</creatorcontrib><creatorcontrib>Ortega, J Enrique</creatorcontrib><creatorcontrib>Sánchez-Portal, Daniel</creatorcontrib><creatorcontrib>Pascual, Jose Ignacio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carbonell-Sanromà, Eduard</au><au>Garcia-Lekue, Aran</au><au>Corso, Martina</au><au>Vasseur, Guillaume</au><au>Brandimarte, Pedro</au><au>Lobo-Checa, Jorge</au><au>de Oteyza, Dimas G</au><au>Li, Jingcheng</au><au>Kawai, Shigeki</au><au>Saito, Shohei</au><au>Yamaguchi, Shigehiro</au><au>Ortega, J Enrique</au><au>Sánchez-Portal, Daniel</au><au>Pascual, Jose Ignacio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Properties of Substitutionally Boron-doped Graphene Nanoribbons on a Au(111) Surface</atitle><jtitle>arXiv.org</jtitle><date>2018-06-06</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>High quality graphene nanoribbons (GNRs) grown by on-surface synthesis strategies with atomic precision can be controllably doped by inserting heteroatoms or chemical groups in the molecular precursors. Here, we study the electronic structure of armchair GNRs substitutionally doped with di-boron moieties at the center, through a combination of scanning tunneling spectroscopy, angle-resolved photoemission, and density functional theory simulations. Boron atoms appear with a small displacement towards the surface signaling their stronger interaction with the metal. We find two boron-rich flat bands emerging as impurity states inside the GNR band gap, one of them particularly broadened after its hybridization with the gold surface states. In addition, the boron atoms shift the conduction and valence bands of the pristine GNR away from the gap edge, and leave unaffected the bands above and below, which become the new frontier bands and have negligible boron character. This is due to the selective mixing of boron states with GNR bands according to their symmetry. Our results depict that the GNRs band structure can be tuned by modifying the separation between di-boron moieties.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1806.02385</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073620889
source ProQuest Publicly Available Content database
subjects Boron
Density functional theory
Electronic properties
Electronic structure
Gold
Graphene
Nanoribbons
Organic chemistry
Photoelectric emission
title Electronic Properties of Substitutionally Boron-doped Graphene Nanoribbons on a Au(111) Surface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Properties%20of%20Substitutionally%20Boron-doped%20Graphene%20Nanoribbons%20on%20a%20Au(111)%20Surface&rft.jtitle=arXiv.org&rft.au=Carbonell-Sanrom%C3%A0,%20Eduard&rft.date=2018-06-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1806.02385&rft_dat=%3Cproquest%3E2073620889%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-fcb5b8b2c32b600ce783aa79ebc48fb5c04ae64cde0d37cde6f6190ce1606b133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073620889&rft_id=info:pmid/&rfr_iscdi=true