Loading…

Progress in the Construction and Testing of the Tianlai Radio Interferometers

The Tianlai Pathfinder is designed to demonstrate the feasibility of using a wide field of view radio interferometers to map the density of neutral hydrogen in the Universe after the Epoch of Reionizaton. This approach, called 21~cm intensity-mapping, promises an inexpensive means for surveying the...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-06
Main Authors: Das, Santanu, Anderson, Christopher J, Ansari, Reza, Jean-Eric Campagne, Charlet, Daniel, Chen, Xuelei, Chen, Zhiping, Cianciara, Aleksander J, Colom, Pierre, Cong, Yanping, Gayley, Kevin G, Geng, Jingchao, Hao, Jie, Huang, Qizhi, Keith, Celeste S, Li, Chao, Li, Jixia, Li, Yichao, Liu, Chao, Liu, Tao, Magneville, Christophe, Marriner, John P, Martin, Jean-Michel, Moniez, Marc, Oxholm, Trevor M, Ue-Li Pen, Perdereau, Olivier, Peterson, Jeffrey B, Shi, Huli, Lin, Shu, Stebbins, Albert, Sun, Shijie, Timbie, Peter T, Torchinsky, Steve, Tucker, Gregory S, Wang, Guisong, Wang, Rongli, Wang, Xin, Wang, Yougang, Wu, Fengquan, Xu, Yidong, Yu, Kaifeng, Zhang, Jiao, Zhang, Juyong, Zhang, Le, Zhu, Jialu, Zuo, Shifan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Tianlai Pathfinder is designed to demonstrate the feasibility of using a wide field of view radio interferometers to map the density of neutral hydrogen in the Universe after the Epoch of Reionizaton. This approach, called 21~cm intensity-mapping, promises an inexpensive means for surveying the large-scale structure of the cosmos. The Tianlai Pathfinder presently consists of an array of three, 15~m \(\times\) 40~m cylinder telescopes and an array of sixteen, 6~m diameter dish antennas located in a radio-quiet part of western China. The two types of arrays were chosen to determine the advantages and disadvantages of each approach. The primary goal of the Pathfinder is to make 3D maps by surveying neutral hydrogen over large areas of the sky %\(20,000 {\rm deg}^2\) in two different redshift ranges: first at \(1.03 > z > 0.78\) (\(700 - 800\)~MHz) and later at \(0.21 > z > 0.12\) (\(1170 - 1270\)~MHz). The most significant challenge to \(21\)~cm intensity-mapping is the removal of strong foreground radiation that dwarfs the cosmological signal. It requires exquisite knowledge of the instrumental response, i.e. calibration. In this paper, we provide an overview of the status of the Pathfinder and discuss the details of some of the analysis that we have carried out to measure the beam function of both arrays. We compare electromagnetic simulations of the arrays to measurements, discuss measurements of the gain and phase stability of the instrument, and provide a brief overview of the data processing pipeline.
ISSN:2331-8422