Loading…
Hybrid Parameter-varying Model Predictive Control for Autonomous Vehicle Steering
In this paper the concept of Hybrid Parameter-Varying Model Predictive Control (HPV-MPC) is applied for autonomous vehicle steering. Parameter-varying in the MPC context means that a prediction model with non-constant, parameter-varying system matrices is employed. In the investigated scenarios, the...
Saved in:
Published in: | European journal of control 2008, Vol.14 (5), p.418-431 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c315t-c34a9e9f7d46a261c72881eac9a9cf9a801072b76159d28cb43cd16099b90b903 |
---|---|
cites | cdi_FETCH-LOGICAL-c315t-c34a9e9f7d46a261c72881eac9a9cf9a801072b76159d28cb43cd16099b90b903 |
container_end_page | 431 |
container_issue | 5 |
container_start_page | 418 |
container_title | European journal of control |
container_volume | 14 |
creator | Besselmann, Thomas Morari, Manfred |
description | In this paper the concept of Hybrid Parameter-Varying Model Predictive Control (HPV-MPC) is applied for autonomous vehicle steering. Parameter-varying in the MPC context means that a prediction model with non-constant, parameter-varying system matrices is employed. In the investigated scenarios, the displacement of a car on an icy road due to a side wind gust shall be mitigated, and a double lane-change maneuver shall be performed autonomously. In order to explore a possible reduction of online computations and the inherent degradation of control performance, the nonlinear model of the lateral dynamics is approximated in various ways. A comparison between controllers using prediction models varying from the full nonlinear model, as an indication for the maximal achievable performance, to a linear model was performed. Particular emphasis was put on the hybrid parameter-varying prediction model, to investigate their potential in terms of computational effort and control performance. |
doi_str_mv | 10.3166/ejc.14.418-431 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207371231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S094735800870788X</els_id><sourcerecordid>1636927461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-c34a9e9f7d46a261c72881eac9a9cf9a801072b76159d28cb43cd16099b90b903</originalsourceid><addsrcrecordid>eNp1kEtPwzAMxyMEEtPYlXPFvSNu0qY5ThMvaYghHtcoTV3I1DUjSSft2xMYV2zLvvjvx4-QS6BzBlV1jRszBz7nUOecwQmZAGdlXlYCTsmESi5yVtb0nMxC2NBkjEHyCXm-PzTettlae73FiD7fa3-ww0f26Frss7XH1ppo95gt3RC967PO-WwxRje4rRtD9o6f1vSYvUREn4QX5KzTfcDZX52St9ub1-V9vnq6e1guVrlhUMaUuZYoO9HyShcVGFHUNaA2UkvTSV1ToKJoRAWlbIvaNJyZFioqZSNpCjYlV8e5O---RgxRbdzoh7RSFVQwAUV6cErmxybjXQgeO7Xzdps-VEDVDziVwCngKoFT_FdQHwWYTt9b9CoYi4NJFDyaqFpn_5N-AzXXc7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207371231</pqid></control><display><type>article</type><title>Hybrid Parameter-varying Model Predictive Control for Autonomous Vehicle Steering</title><source>Elsevier</source><creator>Besselmann, Thomas ; Morari, Manfred</creator><creatorcontrib>Besselmann, Thomas ; Morari, Manfred</creatorcontrib><description>In this paper the concept of Hybrid Parameter-Varying Model Predictive Control (HPV-MPC) is applied for autonomous vehicle steering. Parameter-varying in the MPC context means that a prediction model with non-constant, parameter-varying system matrices is employed. In the investigated scenarios, the displacement of a car on an icy road due to a side wind gust shall be mitigated, and a double lane-change maneuver shall be performed autonomously. In order to explore a possible reduction of online computations and the inherent degradation of control performance, the nonlinear model of the lateral dynamics is approximated in various ways. A comparison between controllers using prediction models varying from the full nonlinear model, as an indication for the maximal achievable performance, to a linear model was performed. Particular emphasis was put on the hybrid parameter-varying prediction model, to investigate their potential in terms of computational effort and control performance.</description><identifier>ISSN: 0947-3580</identifier><identifier>EISSN: 1435-5671</identifier><identifier>DOI: 10.3166/ejc.14.418-431</identifier><language>eng</language><publisher>Philadelphia: Elsevier Ltd</publisher><subject>Algorithms ; automotive ; model predictive control ; Predictive control ; Studies ; Vehicle steering</subject><ispartof>European journal of control, 2008, Vol.14 (5), p.418-431</ispartof><rights>2008 European Control Association (EUCA)</rights><rights>Copyright Lavoisier 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-c34a9e9f7d46a261c72881eac9a9cf9a801072b76159d28cb43cd16099b90b903</citedby><cites>FETCH-LOGICAL-c315t-c34a9e9f7d46a261c72881eac9a9cf9a801072b76159d28cb43cd16099b90b903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Besselmann, Thomas</creatorcontrib><creatorcontrib>Morari, Manfred</creatorcontrib><title>Hybrid Parameter-varying Model Predictive Control for Autonomous Vehicle Steering</title><title>European journal of control</title><description>In this paper the concept of Hybrid Parameter-Varying Model Predictive Control (HPV-MPC) is applied for autonomous vehicle steering. Parameter-varying in the MPC context means that a prediction model with non-constant, parameter-varying system matrices is employed. In the investigated scenarios, the displacement of a car on an icy road due to a side wind gust shall be mitigated, and a double lane-change maneuver shall be performed autonomously. In order to explore a possible reduction of online computations and the inherent degradation of control performance, the nonlinear model of the lateral dynamics is approximated in various ways. A comparison between controllers using prediction models varying from the full nonlinear model, as an indication for the maximal achievable performance, to a linear model was performed. Particular emphasis was put on the hybrid parameter-varying prediction model, to investigate their potential in terms of computational effort and control performance.</description><subject>Algorithms</subject><subject>automotive</subject><subject>model predictive control</subject><subject>Predictive control</subject><subject>Studies</subject><subject>Vehicle steering</subject><issn>0947-3580</issn><issn>1435-5671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAMxyMEEtPYlXPFvSNu0qY5ThMvaYghHtcoTV3I1DUjSSft2xMYV2zLvvjvx4-QS6BzBlV1jRszBz7nUOecwQmZAGdlXlYCTsmESi5yVtb0nMxC2NBkjEHyCXm-PzTettlae73FiD7fa3-ww0f26Frss7XH1ppo95gt3RC967PO-WwxRje4rRtD9o6f1vSYvUREn4QX5KzTfcDZX52St9ub1-V9vnq6e1guVrlhUMaUuZYoO9HyShcVGFHUNaA2UkvTSV1ToKJoRAWlbIvaNJyZFioqZSNpCjYlV8e5O---RgxRbdzoh7RSFVQwAUV6cErmxybjXQgeO7Xzdps-VEDVDziVwCngKoFT_FdQHwWYTt9b9CoYi4NJFDyaqFpn_5N-AzXXc7E</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Besselmann, Thomas</creator><creator>Morari, Manfred</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2008</creationdate><title>Hybrid Parameter-varying Model Predictive Control for Autonomous Vehicle Steering</title><author>Besselmann, Thomas ; Morari, Manfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-c34a9e9f7d46a261c72881eac9a9cf9a801072b76159d28cb43cd16099b90b903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>automotive</topic><topic>model predictive control</topic><topic>Predictive control</topic><topic>Studies</topic><topic>Vehicle steering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besselmann, Thomas</creatorcontrib><creatorcontrib>Morari, Manfred</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>European journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besselmann, Thomas</au><au>Morari, Manfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Parameter-varying Model Predictive Control for Autonomous Vehicle Steering</atitle><jtitle>European journal of control</jtitle><date>2008</date><risdate>2008</risdate><volume>14</volume><issue>5</issue><spage>418</spage><epage>431</epage><pages>418-431</pages><issn>0947-3580</issn><eissn>1435-5671</eissn><abstract>In this paper the concept of Hybrid Parameter-Varying Model Predictive Control (HPV-MPC) is applied for autonomous vehicle steering. Parameter-varying in the MPC context means that a prediction model with non-constant, parameter-varying system matrices is employed. In the investigated scenarios, the displacement of a car on an icy road due to a side wind gust shall be mitigated, and a double lane-change maneuver shall be performed autonomously. In order to explore a possible reduction of online computations and the inherent degradation of control performance, the nonlinear model of the lateral dynamics is approximated in various ways. A comparison between controllers using prediction models varying from the full nonlinear model, as an indication for the maximal achievable performance, to a linear model was performed. Particular emphasis was put on the hybrid parameter-varying prediction model, to investigate their potential in terms of computational effort and control performance.</abstract><cop>Philadelphia</cop><pub>Elsevier Ltd</pub><doi>10.3166/ejc.14.418-431</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-3580 |
ispartof | European journal of control, 2008, Vol.14 (5), p.418-431 |
issn | 0947-3580 1435-5671 |
language | eng |
recordid | cdi_proquest_journals_207371231 |
source | Elsevier |
subjects | Algorithms automotive model predictive control Predictive control Studies Vehicle steering |
title | Hybrid Parameter-varying Model Predictive Control for Autonomous Vehicle Steering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Parameter-varying%20Model%20Predictive%20Control%20for%20Autonomous%20Vehicle%20Steering&rft.jtitle=European%20journal%20of%20control&rft.au=Besselmann,%20Thomas&rft.date=2008&rft.volume=14&rft.issue=5&rft.spage=418&rft.epage=431&rft.pages=418-431&rft.issn=0947-3580&rft.eissn=1435-5671&rft_id=info:doi/10.3166/ejc.14.418-431&rft_dat=%3Cproquest_cross%3E1636927461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-c34a9e9f7d46a261c72881eac9a9cf9a801072b76159d28cb43cd16099b90b903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=207371231&rft_id=info:pmid/&rfr_iscdi=true |