Loading…

Judgmental decomposition: when does it work?

We hypothesized that multiplicative decomposition would improve accuracy only in certain conditions. In particular, we expected it to help for problems involving extreme and uncertain values. We first reanalyzed results from two published studies. Decomposition improved accuracy for nine problems th...

Full description

Saved in:
Bibliographic Details
Published in:International journal of forecasting 1994-12, Vol.10 (4), p.495-506
Main Authors: MacGregor, Donald G., Armstrong, J.Scott
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c534t-7e9a24dd1506bf3cad11093da93fa70993134bbd06e00988e135fe9e5e32421b3
cites cdi_FETCH-LOGICAL-c534t-7e9a24dd1506bf3cad11093da93fa70993134bbd06e00988e135fe9e5e32421b3
container_end_page 506
container_issue 4
container_start_page 495
container_title International journal of forecasting
container_volume 10
creator MacGregor, Donald G.
Armstrong, J.Scott
description We hypothesized that multiplicative decomposition would improve accuracy only in certain conditions. In particular, we expected it to help for problems involving extreme and uncertain values. We first reanalyzed results from two published studies. Decomposition improved accuracy for nine problems that involved extreme and uncertain values, but for six problems with target values that were not extreme and uncertain, decomposition was not more accurate. Next, we conducted experiments involving 10 problems with 280 subjects making 1078 estimates. As hypothesized, decomposition improved accuracy when the problem involved the estimation of extreme and uncertain values. Otherwise, decomposition often produced less accurate predictions.
doi_str_mv 10.1016/0169-2070(94)90018-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207378142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0169207094900183</els_id><sourcerecordid>8987637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-7e9a24dd1506bf3cad11093da93fa70993134bbd06e00988e135fe9e5e32421b3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIfcIjgAhKB3dhpYg4ghHhVSFzgbLnxBlxoHOy0FX-PQ1FvcFjNHmZmd4axfYRTBBydxZFpBgUcSXEsAbBM-QYbYFlkaZkBbLLBmrLNdkKYAkBeIA7YyXhuXmfUdPojMVS5WeuC7axrzpPlGzWJcRQS2yVL598vd9lWrT8C7f3ikL3c3jxf36ePT3cP11ePaZVz0aUFSZ0JYzCH0aTmlTaIILnRkte6ACk5cjGZGBgRgCxLQp7XJCknnokMJ3zIDla-rXefcwqdmrq5b-JJFSPwokSRRdLhXyTkMZ3MhMDIEitW5V0InmrVejvT_kshqL481TfT24KSQv2Up3iUjVcyTy1Vaw0R2aarnVcLxXV04PqrX2SUcm3j9Nj2KHMV46u3bhbNLlZmFDtbWPIqVJaaioz1VHXKOPv_N98ewYwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1305792441</pqid></control><display><type>article</type><title>Judgmental decomposition: when does it work?</title><source>Backfile Package - Business, Management and Accounting (Legacy) [YBT]</source><source>Backfile Package - Decision Sciences [YDT]</source><creator>MacGregor, Donald G. ; Armstrong, J.Scott</creator><creatorcontrib>MacGregor, Donald G. ; Armstrong, J.Scott</creatorcontrib><description>We hypothesized that multiplicative decomposition would improve accuracy only in certain conditions. In particular, we expected it to help for problems involving extreme and uncertain values. We first reanalyzed results from two published studies. Decomposition improved accuracy for nine problems that involved extreme and uncertain values, but for six problems with target values that were not extreme and uncertain, decomposition was not more accurate. Next, we conducted experiments involving 10 problems with 280 subjects making 1078 estimates. As hypothesized, decomposition improved accuracy when the problem involved the estimation of extreme and uncertain values. Otherwise, decomposition often produced less accurate predictions.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/0169-2070(94)90018-3</identifier><identifier>CODEN: IJFOEK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accuracy ; Decision Analysis ; Decomposition ; Estimation ; Extreme Values ; Forecasting ; Forecasting techniques ; Hypotheses ; Multiplicative Decomposition ; Studies ; Uncertainty</subject><ispartof>International journal of forecasting, 1994-12, Vol.10 (4), p.495-506</ispartof><rights>1994</rights><rights>Copyright Elsevier Sequoia S.A. Dec 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-7e9a24dd1506bf3cad11093da93fa70993134bbd06e00988e135fe9e5e32421b3</citedby><cites>FETCH-LOGICAL-c534t-7e9a24dd1506bf3cad11093da93fa70993134bbd06e00988e135fe9e5e32421b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0169207094900183$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3386,3440,27924,27925,45979,45991</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeintfor/v_3a10_3ay_3a1994_3ai_3a4_3ap_3a495-506.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>MacGregor, Donald G.</creatorcontrib><creatorcontrib>Armstrong, J.Scott</creatorcontrib><title>Judgmental decomposition: when does it work?</title><title>International journal of forecasting</title><description>We hypothesized that multiplicative decomposition would improve accuracy only in certain conditions. In particular, we expected it to help for problems involving extreme and uncertain values. We first reanalyzed results from two published studies. Decomposition improved accuracy for nine problems that involved extreme and uncertain values, but for six problems with target values that were not extreme and uncertain, decomposition was not more accurate. Next, we conducted experiments involving 10 problems with 280 subjects making 1078 estimates. As hypothesized, decomposition improved accuracy when the problem involved the estimation of extreme and uncertain values. Otherwise, decomposition often produced less accurate predictions.</description><subject>Accuracy</subject><subject>Decision Analysis</subject><subject>Decomposition</subject><subject>Estimation</subject><subject>Extreme Values</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Hypotheses</subject><subject>Multiplicative Decomposition</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIfcIjgAhKB3dhpYg4ghHhVSFzgbLnxBlxoHOy0FX-PQ1FvcFjNHmZmd4axfYRTBBydxZFpBgUcSXEsAbBM-QYbYFlkaZkBbLLBmrLNdkKYAkBeIA7YyXhuXmfUdPojMVS5WeuC7axrzpPlGzWJcRQS2yVL598vd9lWrT8C7f3ikL3c3jxf36ePT3cP11ePaZVz0aUFSZ0JYzCH0aTmlTaIILnRkte6ACk5cjGZGBgRgCxLQp7XJCknnokMJ3zIDla-rXefcwqdmrq5b-JJFSPwokSRRdLhXyTkMZ3MhMDIEitW5V0InmrVejvT_kshqL481TfT24KSQv2Up3iUjVcyTy1Vaw0R2aarnVcLxXV04PqrX2SUcm3j9Nj2KHMV46u3bhbNLlZmFDtbWPIqVJaaioz1VHXKOPv_N98ewYwU</recordid><startdate>19941201</startdate><enddate>19941201</enddate><creator>MacGregor, Donald G.</creator><creator>Armstrong, J.Scott</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HNJIA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19941201</creationdate><title>Judgmental decomposition: when does it work?</title><author>MacGregor, Donald G. ; Armstrong, J.Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-7e9a24dd1506bf3cad11093da93fa70993134bbd06e00988e135fe9e5e32421b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Accuracy</topic><topic>Decision Analysis</topic><topic>Decomposition</topic><topic>Estimation</topic><topic>Extreme Values</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Hypotheses</topic><topic>Multiplicative Decomposition</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacGregor, Donald G.</creatorcontrib><creatorcontrib>Armstrong, J.Scott</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 20</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacGregor, Donald G.</au><au>Armstrong, J.Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Judgmental decomposition: when does it work?</atitle><jtitle>International journal of forecasting</jtitle><date>1994-12-01</date><risdate>1994</risdate><volume>10</volume><issue>4</issue><spage>495</spage><epage>506</epage><pages>495-506</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><coden>IJFOEK</coden><abstract>We hypothesized that multiplicative decomposition would improve accuracy only in certain conditions. In particular, we expected it to help for problems involving extreme and uncertain values. We first reanalyzed results from two published studies. Decomposition improved accuracy for nine problems that involved extreme and uncertain values, but for six problems with target values that were not extreme and uncertain, decomposition was not more accurate. Next, we conducted experiments involving 10 problems with 280 subjects making 1078 estimates. As hypothesized, decomposition improved accuracy when the problem involved the estimation of extreme and uncertain values. Otherwise, decomposition often produced less accurate predictions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0169-2070(94)90018-3</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-2070
ispartof International journal of forecasting, 1994-12, Vol.10 (4), p.495-506
issn 0169-2070
1872-8200
language eng
recordid cdi_proquest_journals_207378142
source Backfile Package - Business, Management and Accounting (Legacy) [YBT]; Backfile Package - Decision Sciences [YDT]
subjects Accuracy
Decision Analysis
Decomposition
Estimation
Extreme Values
Forecasting
Forecasting techniques
Hypotheses
Multiplicative Decomposition
Studies
Uncertainty
title Judgmental decomposition: when does it work?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Judgmental%20decomposition:%20when%20does%20it%20work?&rft.jtitle=International%20journal%20of%20forecasting&rft.au=MacGregor,%20Donald%20G.&rft.date=1994-12-01&rft.volume=10&rft.issue=4&rft.spage=495&rft.epage=506&rft.pages=495-506&rft.issn=0169-2070&rft.eissn=1872-8200&rft.coden=IJFOEK&rft_id=info:doi/10.1016/0169-2070(94)90018-3&rft_dat=%3Cproquest_cross%3E8987637%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c534t-7e9a24dd1506bf3cad11093da93fa70993134bbd06e00988e135fe9e5e32421b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1305792441&rft_id=info:pmid/&rfr_iscdi=true