Loading…
Judgmental decomposition: when does it work?
We hypothesized that multiplicative decomposition would improve accuracy only in certain conditions. In particular, we expected it to help for problems involving extreme and uncertain values. We first reanalyzed results from two published studies. Decomposition improved accuracy for nine problems th...
Saved in:
Published in: | International journal of forecasting 1994-12, Vol.10 (4), p.495-506 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c534t-7e9a24dd1506bf3cad11093da93fa70993134bbd06e00988e135fe9e5e32421b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c534t-7e9a24dd1506bf3cad11093da93fa70993134bbd06e00988e135fe9e5e32421b3 |
container_end_page | 506 |
container_issue | 4 |
container_start_page | 495 |
container_title | International journal of forecasting |
container_volume | 10 |
creator | MacGregor, Donald G. Armstrong, J.Scott |
description | We hypothesized that multiplicative decomposition would improve accuracy only in certain conditions. In particular, we expected it to help for problems involving extreme and uncertain values. We first reanalyzed results from two published studies. Decomposition improved accuracy for nine problems that involved extreme and uncertain values, but for six problems with target values that were not extreme and uncertain, decomposition was not more accurate. Next, we conducted experiments involving 10 problems with 280 subjects making 1078 estimates. As hypothesized, decomposition improved accuracy when the problem involved the estimation of extreme and uncertain values. Otherwise, decomposition often produced less accurate predictions. |
doi_str_mv | 10.1016/0169-2070(94)90018-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207378142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0169207094900183</els_id><sourcerecordid>8987637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-7e9a24dd1506bf3cad11093da93fa70993134bbd06e00988e135fe9e5e32421b3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIfcIjgAhKB3dhpYg4ghHhVSFzgbLnxBlxoHOy0FX-PQ1FvcFjNHmZmd4axfYRTBBydxZFpBgUcSXEsAbBM-QYbYFlkaZkBbLLBmrLNdkKYAkBeIA7YyXhuXmfUdPojMVS5WeuC7axrzpPlGzWJcRQS2yVL598vd9lWrT8C7f3ikL3c3jxf36ePT3cP11ePaZVz0aUFSZ0JYzCH0aTmlTaIILnRkte6ACk5cjGZGBgRgCxLQp7XJCknnokMJ3zIDla-rXefcwqdmrq5b-JJFSPwokSRRdLhXyTkMZ3MhMDIEitW5V0InmrVejvT_kshqL481TfT24KSQv2Up3iUjVcyTy1Vaw0R2aarnVcLxXV04PqrX2SUcm3j9Nj2KHMV46u3bhbNLlZmFDtbWPIqVJaaioz1VHXKOPv_N98ewYwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1305792441</pqid></control><display><type>article</type><title>Judgmental decomposition: when does it work?</title><source>Backfile Package - Business, Management and Accounting (Legacy) [YBT]</source><source>Backfile Package - Decision Sciences [YDT]</source><creator>MacGregor, Donald G. ; Armstrong, J.Scott</creator><creatorcontrib>MacGregor, Donald G. ; Armstrong, J.Scott</creatorcontrib><description>We hypothesized that multiplicative decomposition would improve accuracy only in certain conditions. In particular, we expected it to help for problems involving extreme and uncertain values. We first reanalyzed results from two published studies. Decomposition improved accuracy for nine problems that involved extreme and uncertain values, but for six problems with target values that were not extreme and uncertain, decomposition was not more accurate. Next, we conducted experiments involving 10 problems with 280 subjects making 1078 estimates. As hypothesized, decomposition improved accuracy when the problem involved the estimation of extreme and uncertain values. Otherwise, decomposition often produced less accurate predictions.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/0169-2070(94)90018-3</identifier><identifier>CODEN: IJFOEK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accuracy ; Decision Analysis ; Decomposition ; Estimation ; Extreme Values ; Forecasting ; Forecasting techniques ; Hypotheses ; Multiplicative Decomposition ; Studies ; Uncertainty</subject><ispartof>International journal of forecasting, 1994-12, Vol.10 (4), p.495-506</ispartof><rights>1994</rights><rights>Copyright Elsevier Sequoia S.A. Dec 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-7e9a24dd1506bf3cad11093da93fa70993134bbd06e00988e135fe9e5e32421b3</citedby><cites>FETCH-LOGICAL-c534t-7e9a24dd1506bf3cad11093da93fa70993134bbd06e00988e135fe9e5e32421b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0169207094900183$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3386,3440,27924,27925,45979,45991</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeintfor/v_3a10_3ay_3a1994_3ai_3a4_3ap_3a495-506.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>MacGregor, Donald G.</creatorcontrib><creatorcontrib>Armstrong, J.Scott</creatorcontrib><title>Judgmental decomposition: when does it work?</title><title>International journal of forecasting</title><description>We hypothesized that multiplicative decomposition would improve accuracy only in certain conditions. In particular, we expected it to help for problems involving extreme and uncertain values. We first reanalyzed results from two published studies. Decomposition improved accuracy for nine problems that involved extreme and uncertain values, but for six problems with target values that were not extreme and uncertain, decomposition was not more accurate. Next, we conducted experiments involving 10 problems with 280 subjects making 1078 estimates. As hypothesized, decomposition improved accuracy when the problem involved the estimation of extreme and uncertain values. Otherwise, decomposition often produced less accurate predictions.</description><subject>Accuracy</subject><subject>Decision Analysis</subject><subject>Decomposition</subject><subject>Estimation</subject><subject>Extreme Values</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Hypotheses</subject><subject>Multiplicative Decomposition</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIfcIjgAhKB3dhpYg4ghHhVSFzgbLnxBlxoHOy0FX-PQ1FvcFjNHmZmd4axfYRTBBydxZFpBgUcSXEsAbBM-QYbYFlkaZkBbLLBmrLNdkKYAkBeIA7YyXhuXmfUdPojMVS5WeuC7axrzpPlGzWJcRQS2yVL598vd9lWrT8C7f3ikL3c3jxf36ePT3cP11ePaZVz0aUFSZ0JYzCH0aTmlTaIILnRkte6ACk5cjGZGBgRgCxLQp7XJCknnokMJ3zIDla-rXefcwqdmrq5b-JJFSPwokSRRdLhXyTkMZ3MhMDIEitW5V0InmrVejvT_kshqL481TfT24KSQv2Up3iUjVcyTy1Vaw0R2aarnVcLxXV04PqrX2SUcm3j9Nj2KHMV46u3bhbNLlZmFDtbWPIqVJaaioz1VHXKOPv_N98ewYwU</recordid><startdate>19941201</startdate><enddate>19941201</enddate><creator>MacGregor, Donald G.</creator><creator>Armstrong, J.Scott</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HNJIA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19941201</creationdate><title>Judgmental decomposition: when does it work?</title><author>MacGregor, Donald G. ; Armstrong, J.Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-7e9a24dd1506bf3cad11093da93fa70993134bbd06e00988e135fe9e5e32421b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Accuracy</topic><topic>Decision Analysis</topic><topic>Decomposition</topic><topic>Estimation</topic><topic>Extreme Values</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Hypotheses</topic><topic>Multiplicative Decomposition</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacGregor, Donald G.</creatorcontrib><creatorcontrib>Armstrong, J.Scott</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 20</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacGregor, Donald G.</au><au>Armstrong, J.Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Judgmental decomposition: when does it work?</atitle><jtitle>International journal of forecasting</jtitle><date>1994-12-01</date><risdate>1994</risdate><volume>10</volume><issue>4</issue><spage>495</spage><epage>506</epage><pages>495-506</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><coden>IJFOEK</coden><abstract>We hypothesized that multiplicative decomposition would improve accuracy only in certain conditions. In particular, we expected it to help for problems involving extreme and uncertain values. We first reanalyzed results from two published studies. Decomposition improved accuracy for nine problems that involved extreme and uncertain values, but for six problems with target values that were not extreme and uncertain, decomposition was not more accurate. Next, we conducted experiments involving 10 problems with 280 subjects making 1078 estimates. As hypothesized, decomposition improved accuracy when the problem involved the estimation of extreme and uncertain values. Otherwise, decomposition often produced less accurate predictions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0169-2070(94)90018-3</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2070 |
ispartof | International journal of forecasting, 1994-12, Vol.10 (4), p.495-506 |
issn | 0169-2070 1872-8200 |
language | eng |
recordid | cdi_proquest_journals_207378142 |
source | Backfile Package - Business, Management and Accounting (Legacy) [YBT]; Backfile Package - Decision Sciences [YDT] |
subjects | Accuracy Decision Analysis Decomposition Estimation Extreme Values Forecasting Forecasting techniques Hypotheses Multiplicative Decomposition Studies Uncertainty |
title | Judgmental decomposition: when does it work? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Judgmental%20decomposition:%20when%20does%20it%20work?&rft.jtitle=International%20journal%20of%20forecasting&rft.au=MacGregor,%20Donald%20G.&rft.date=1994-12-01&rft.volume=10&rft.issue=4&rft.spage=495&rft.epage=506&rft.pages=495-506&rft.issn=0169-2070&rft.eissn=1872-8200&rft.coden=IJFOEK&rft_id=info:doi/10.1016/0169-2070(94)90018-3&rft_dat=%3Cproquest_cross%3E8987637%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c534t-7e9a24dd1506bf3cad11093da93fa70993134bbd06e00988e135fe9e5e32421b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1305792441&rft_id=info:pmid/&rfr_iscdi=true |