Loading…

Near-Lossless Deep Feature Compression for Collaborative Intelligence

Collaborative intelligence is a new paradigm for efficient deployment of deep neural networks across the mobile-cloud infrastructure. By dividing the network between the mobile and the cloud, it is possible to distribute the computational workload such that the overall energy and/or latency of the s...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-06
Main Authors: Choi, Hyomin, Bajic, Ivan V
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Collaborative intelligence is a new paradigm for efficient deployment of deep neural networks across the mobile-cloud infrastructure. By dividing the network between the mobile and the cloud, it is possible to distribute the computational workload such that the overall energy and/or latency of the system is minimized. However, this necessitates sending deep feature data from the mobile to the cloud in order to perform inference. In this work, we examine the differences between the deep feature data and natural image data, and propose a simple and effective near-lossless deep feature compressor. The proposed method achieves up to 5% bit rate reduction compared to HEVC-Intra and even more against other popular image codecs. Finally, we suggest an approach for reconstructing the input image from compressed deep features in the cloud, that could serve to supplement the inference performed by the deep model.
ISSN:2331-8422