Loading…
The nontrivial ground state topology in the coexistence phase of chiral d-wave superconductivity and 120 degrees magnetic order on a triangular lattice
The Z2 topological invariant is defined in the chiral d-wave superconductor having a triangular lattice in the presence of the 120 degrees magnetic ordering. By analyzing the Z2 invariant, we determine the conditions of implementing nontrivial phases in the model with regard to superconducting pairi...
Saved in:
Published in: | arXiv.org 2017-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Val'kov, Valery V Zlotnikov, Anton O Shustin, Maxim S |
description | The Z2 topological invariant is defined in the chiral d-wave superconductor having a triangular lattice in the presence of the 120 degrees magnetic ordering. By analyzing the Z2 invariant, we determine the conditions of implementing nontrivial phases in the model with regard to superconducting pairings between nearest and next nearest neighbors. It is often supposed in such system that the pairing parameter between nearest neighbors should be equal to zero due to influence of the intersite Coulomb interaction. We show that taking into account even weak pairings in the first coordination sphere leads to the disappearance of the gapless excitations of the bulk spectrum in the wide region of the parameter space. Thus topological invariants can be defined in such region. Solving the problem of open edges it is shown that the zero energy modes are realized basically in the topologically nontrivial phases. Such zero modes are topologically protected Majorana modes. A connection between the Z2 invariant calculated at the symmetric points of the Brillouin zone with respect to the electron-hole symmetry and the integer topological invariant of the ground state of the 2D lattice expressed in terms of the Green functions is established in the presence of noncollinear magnetic ordering. |
doi_str_mv | 10.48550/arxiv.1707.04422 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073846503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073846503</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-2466274eb44309b386719b3091e69ea3a0ea9516e8d3e46cd4cdaaab5c06d0423</originalsourceid><addsrcrecordid>eNotjctqwzAUREWh0JDmA7q70LVTWS_byxL6gkI32Ycb6cZxcKVUktPkS_q7FbSrGZiZM4zd1XypWq35A8bzcFrWDW-WXCkhrthMSFlXbfE3bJHSgXMuTCO0ljP2s94T-OBzHE4DjtDHMHkHKWMmyOEYxtBfYPCQS88GOg8pk7cExz0mgrADux9iGbrqG08EaTpStMG7yeZCzBfAgqsFB0d9JErwib2nPFgI0VGE4AGhvKPvpxEjjJhLSLfseodjosW_ztn6-Wm9eq3eP17eVo_vFWohK6GMEY2irVKSd1vZmqYuwruaTEcokRN2ujbUOknKWKesQ8Stttw4roScs_s_7DGGr4lS3hzCFH153AjeyFYZzaX8BRFvauc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073846503</pqid></control><display><type>article</type><title>The nontrivial ground state topology in the coexistence phase of chiral d-wave superconductivity and 120 degrees magnetic order on a triangular lattice</title><source>Publicly Available Content Database</source><creator>Val'kov, Valery V ; Zlotnikov, Anton O ; Shustin, Maxim S</creator><creatorcontrib>Val'kov, Valery V ; Zlotnikov, Anton O ; Shustin, Maxim S</creatorcontrib><description>The Z2 topological invariant is defined in the chiral d-wave superconductor having a triangular lattice in the presence of the 120 degrees magnetic ordering. By analyzing the Z2 invariant, we determine the conditions of implementing nontrivial phases in the model with regard to superconducting pairings between nearest and next nearest neighbors. It is often supposed in such system that the pairing parameter between nearest neighbors should be equal to zero due to influence of the intersite Coulomb interaction. We show that taking into account even weak pairings in the first coordination sphere leads to the disappearance of the gapless excitations of the bulk spectrum in the wide region of the parameter space. Thus topological invariants can be defined in such region. Solving the problem of open edges it is shown that the zero energy modes are realized basically in the topologically nontrivial phases. Such zero modes are topologically protected Majorana modes. A connection between the Z2 invariant calculated at the symmetric points of the Brillouin zone with respect to the electron-hole symmetry and the integer topological invariant of the ground state of the 2D lattice expressed in terms of the Green functions is established in the presence of noncollinear magnetic ordering.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1707.04422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brillouin zones ; Green's functions ; Ground state ; Holes (electron deficiencies) ; Invariants ; Lattice vibration ; Parameters ; Superconductivity ; Symmetry ; Topology</subject><ispartof>arXiv.org, 2017-07</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073846503?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Val'kov, Valery V</creatorcontrib><creatorcontrib>Zlotnikov, Anton O</creatorcontrib><creatorcontrib>Shustin, Maxim S</creatorcontrib><title>The nontrivial ground state topology in the coexistence phase of chiral d-wave superconductivity and 120 degrees magnetic order on a triangular lattice</title><title>arXiv.org</title><description>The Z2 topological invariant is defined in the chiral d-wave superconductor having a triangular lattice in the presence of the 120 degrees magnetic ordering. By analyzing the Z2 invariant, we determine the conditions of implementing nontrivial phases in the model with regard to superconducting pairings between nearest and next nearest neighbors. It is often supposed in such system that the pairing parameter between nearest neighbors should be equal to zero due to influence of the intersite Coulomb interaction. We show that taking into account even weak pairings in the first coordination sphere leads to the disappearance of the gapless excitations of the bulk spectrum in the wide region of the parameter space. Thus topological invariants can be defined in such region. Solving the problem of open edges it is shown that the zero energy modes are realized basically in the topologically nontrivial phases. Such zero modes are topologically protected Majorana modes. A connection between the Z2 invariant calculated at the symmetric points of the Brillouin zone with respect to the electron-hole symmetry and the integer topological invariant of the ground state of the 2D lattice expressed in terms of the Green functions is established in the presence of noncollinear magnetic ordering.</description><subject>Brillouin zones</subject><subject>Green's functions</subject><subject>Ground state</subject><subject>Holes (electron deficiencies)</subject><subject>Invariants</subject><subject>Lattice vibration</subject><subject>Parameters</subject><subject>Superconductivity</subject><subject>Symmetry</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctqwzAUREWh0JDmA7q70LVTWS_byxL6gkI32Ycb6cZxcKVUktPkS_q7FbSrGZiZM4zd1XypWq35A8bzcFrWDW-WXCkhrthMSFlXbfE3bJHSgXMuTCO0ljP2s94T-OBzHE4DjtDHMHkHKWMmyOEYxtBfYPCQS88GOg8pk7cExz0mgrADux9iGbrqG08EaTpStMG7yeZCzBfAgqsFB0d9JErwib2nPFgI0VGE4AGhvKPvpxEjjJhLSLfseodjosW_ztn6-Wm9eq3eP17eVo_vFWohK6GMEY2irVKSd1vZmqYuwruaTEcokRN2ujbUOknKWKesQ8Stttw4roScs_s_7DGGr4lS3hzCFH153AjeyFYZzaX8BRFvauc</recordid><startdate>20170714</startdate><enddate>20170714</enddate><creator>Val'kov, Valery V</creator><creator>Zlotnikov, Anton O</creator><creator>Shustin, Maxim S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170714</creationdate><title>The nontrivial ground state topology in the coexistence phase of chiral d-wave superconductivity and 120 degrees magnetic order on a triangular lattice</title><author>Val'kov, Valery V ; Zlotnikov, Anton O ; Shustin, Maxim S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-2466274eb44309b386719b3091e69ea3a0ea9516e8d3e46cd4cdaaab5c06d0423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brillouin zones</topic><topic>Green's functions</topic><topic>Ground state</topic><topic>Holes (electron deficiencies)</topic><topic>Invariants</topic><topic>Lattice vibration</topic><topic>Parameters</topic><topic>Superconductivity</topic><topic>Symmetry</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Val'kov, Valery V</creatorcontrib><creatorcontrib>Zlotnikov, Anton O</creatorcontrib><creatorcontrib>Shustin, Maxim S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Val'kov, Valery V</au><au>Zlotnikov, Anton O</au><au>Shustin, Maxim S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The nontrivial ground state topology in the coexistence phase of chiral d-wave superconductivity and 120 degrees magnetic order on a triangular lattice</atitle><jtitle>arXiv.org</jtitle><date>2017-07-14</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>The Z2 topological invariant is defined in the chiral d-wave superconductor having a triangular lattice in the presence of the 120 degrees magnetic ordering. By analyzing the Z2 invariant, we determine the conditions of implementing nontrivial phases in the model with regard to superconducting pairings between nearest and next nearest neighbors. It is often supposed in such system that the pairing parameter between nearest neighbors should be equal to zero due to influence of the intersite Coulomb interaction. We show that taking into account even weak pairings in the first coordination sphere leads to the disappearance of the gapless excitations of the bulk spectrum in the wide region of the parameter space. Thus topological invariants can be defined in such region. Solving the problem of open edges it is shown that the zero energy modes are realized basically in the topologically nontrivial phases. Such zero modes are topologically protected Majorana modes. A connection between the Z2 invariant calculated at the symmetric points of the Brillouin zone with respect to the electron-hole symmetry and the integer topological invariant of the ground state of the 2D lattice expressed in terms of the Green functions is established in the presence of noncollinear magnetic ordering.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1707.04422</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073846503 |
source | Publicly Available Content Database |
subjects | Brillouin zones Green's functions Ground state Holes (electron deficiencies) Invariants Lattice vibration Parameters Superconductivity Symmetry Topology |
title | The nontrivial ground state topology in the coexistence phase of chiral d-wave superconductivity and 120 degrees magnetic order on a triangular lattice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20nontrivial%20ground%20state%20topology%20in%20the%20coexistence%20phase%20of%20chiral%20d-wave%20superconductivity%20and%20120%20degrees%20magnetic%20order%20on%20a%20triangular%20lattice&rft.jtitle=arXiv.org&rft.au=Val'kov,%20Valery%20V&rft.date=2017-07-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1707.04422&rft_dat=%3Cproquest%3E2073846503%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-2466274eb44309b386719b3091e69ea3a0ea9516e8d3e46cd4cdaaab5c06d0423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073846503&rft_id=info:pmid/&rfr_iscdi=true |