Loading…

Gigahertz Single-Electron Pumping Mediated by Parasitic States

In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising per...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-06
Main Authors: Rossi, A, Klochan, J, Timoshenko, J, Hudson, F E, Möttönen, M, Rogge, S, Dzurak, A S, Kashcheyevs, V, Tettamanzi, G C
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rossi, A
Klochan, J
Timoshenko, J
Hudson, F E
Möttönen, M
Rogge, S
Dzurak, A S
Kashcheyevs, V
Tettamanzi, G C
description In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz, the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states, and achieve robust current quantization up to a few gigahertz. We show that the fidelity of the electron capture depends on the sequence in which the parasitic states become available for loading, resulting in distinctive frequency dependent features in the pumped current.
doi_str_mv 10.48550/arxiv.1803.00791
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073889110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073889110</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-f05c75ab66ea7b44e1e38e523e90134312da6f994f8e92a983a4007484f5c9de3</originalsourceid><addsrcrecordid>eNotjs1Kw0AURgdBsNQ-gLsB14l3_pKZjSClVqFiod2Xm-SmTolJnZmI-vQGdHXgLM73MXYjINfWGLjD8OU_c2FB5QClExdsJpUSmdVSXrFFjCcAkEUpjVEzdr_2R3yjkH74zvfHjrJVR3UKQ8-34_t5UvyFGo-JGl598y0GjD75mu_S5OI1u2yxi7T455ztH1f75VO2eV0_Lx82GRoJWQumLg1WRUFYVlqTIGXJSEUOhNJKyAaL1jndWnISnVWop-_a6tbUriE1Z7d_2XMYPkaK6XAaxtBPiwcJpbLWCQHqF4LGSVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073889110</pqid></control><display><type>article</type><title>Gigahertz Single-Electron Pumping Mediated by Parasitic States</title><source>Publicly Available Content Database</source><creator>Rossi, A ; Klochan, J ; Timoshenko, J ; Hudson, F E ; Möttönen, M ; Rogge, S ; Dzurak, A S ; Kashcheyevs, V ; Tettamanzi, G C</creator><creatorcontrib>Rossi, A ; Klochan, J ; Timoshenko, J ; Hudson, F E ; Möttönen, M ; Rogge, S ; Dzurak, A S ; Kashcheyevs, V ; Tettamanzi, G C</creatorcontrib><description>In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz, the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states, and achieve robust current quantization up to a few gigahertz. We show that the fidelity of the electron capture depends on the sequence in which the parasitic states become available for loading, resulting in distinctive frequency dependent features in the pumped current.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1803.00791</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Beta decay ; Charge transfer ; Electron capture ; Electron pumping ; Pumps ; Quantum dots ; Single electrons</subject><ispartof>arXiv.org, 2018-06</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073889110?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Rossi, A</creatorcontrib><creatorcontrib>Klochan, J</creatorcontrib><creatorcontrib>Timoshenko, J</creatorcontrib><creatorcontrib>Hudson, F E</creatorcontrib><creatorcontrib>Möttönen, M</creatorcontrib><creatorcontrib>Rogge, S</creatorcontrib><creatorcontrib>Dzurak, A S</creatorcontrib><creatorcontrib>Kashcheyevs, V</creatorcontrib><creatorcontrib>Tettamanzi, G C</creatorcontrib><title>Gigahertz Single-Electron Pumping Mediated by Parasitic States</title><title>arXiv.org</title><description>In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz, the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states, and achieve robust current quantization up to a few gigahertz. We show that the fidelity of the electron capture depends on the sequence in which the parasitic states become available for loading, resulting in distinctive frequency dependent features in the pumped current.</description><subject>Accuracy</subject><subject>Beta decay</subject><subject>Charge transfer</subject><subject>Electron capture</subject><subject>Electron pumping</subject><subject>Pumps</subject><subject>Quantum dots</subject><subject>Single electrons</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjs1Kw0AURgdBsNQ-gLsB14l3_pKZjSClVqFiod2Xm-SmTolJnZmI-vQGdHXgLM73MXYjINfWGLjD8OU_c2FB5QClExdsJpUSmdVSXrFFjCcAkEUpjVEzdr_2R3yjkH74zvfHjrJVR3UKQ8-34_t5UvyFGo-JGl598y0GjD75mu_S5OI1u2yxi7T455ztH1f75VO2eV0_Lx82GRoJWQumLg1WRUFYVlqTIGXJSEUOhNJKyAaL1jndWnISnVWop-_a6tbUriE1Z7d_2XMYPkaK6XAaxtBPiwcJpbLWCQHqF4LGSVw</recordid><startdate>20180627</startdate><enddate>20180627</enddate><creator>Rossi, A</creator><creator>Klochan, J</creator><creator>Timoshenko, J</creator><creator>Hudson, F E</creator><creator>Möttönen, M</creator><creator>Rogge, S</creator><creator>Dzurak, A S</creator><creator>Kashcheyevs, V</creator><creator>Tettamanzi, G C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180627</creationdate><title>Gigahertz Single-Electron Pumping Mediated by Parasitic States</title><author>Rossi, A ; Klochan, J ; Timoshenko, J ; Hudson, F E ; Möttönen, M ; Rogge, S ; Dzurak, A S ; Kashcheyevs, V ; Tettamanzi, G C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-f05c75ab66ea7b44e1e38e523e90134312da6f994f8e92a983a4007484f5c9de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Beta decay</topic><topic>Charge transfer</topic><topic>Electron capture</topic><topic>Electron pumping</topic><topic>Pumps</topic><topic>Quantum dots</topic><topic>Single electrons</topic><toplevel>online_resources</toplevel><creatorcontrib>Rossi, A</creatorcontrib><creatorcontrib>Klochan, J</creatorcontrib><creatorcontrib>Timoshenko, J</creatorcontrib><creatorcontrib>Hudson, F E</creatorcontrib><creatorcontrib>Möttönen, M</creatorcontrib><creatorcontrib>Rogge, S</creatorcontrib><creatorcontrib>Dzurak, A S</creatorcontrib><creatorcontrib>Kashcheyevs, V</creatorcontrib><creatorcontrib>Tettamanzi, G C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rossi, A</au><au>Klochan, J</au><au>Timoshenko, J</au><au>Hudson, F E</au><au>Möttönen, M</au><au>Rogge, S</au><au>Dzurak, A S</au><au>Kashcheyevs, V</au><au>Tettamanzi, G C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gigahertz Single-Electron Pumping Mediated by Parasitic States</atitle><jtitle>arXiv.org</jtitle><date>2018-06-27</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz, the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states, and achieve robust current quantization up to a few gigahertz. We show that the fidelity of the electron capture depends on the sequence in which the parasitic states become available for loading, resulting in distinctive frequency dependent features in the pumped current.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1803.00791</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073889110
source Publicly Available Content Database
subjects Accuracy
Beta decay
Charge transfer
Electron capture
Electron pumping
Pumps
Quantum dots
Single electrons
title Gigahertz Single-Electron Pumping Mediated by Parasitic States
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gigahertz%20Single-Electron%20Pumping%20Mediated%20by%20Parasitic%20States&rft.jtitle=arXiv.org&rft.au=Rossi,%20A&rft.date=2018-06-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1803.00791&rft_dat=%3Cproquest%3E2073889110%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-f05c75ab66ea7b44e1e38e523e90134312da6f994f8e92a983a4007484f5c9de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073889110&rft_id=info:pmid/&rfr_iscdi=true