Loading…
Gigahertz Single-Electron Pumping Mediated by Parasitic States
In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising per...
Saved in:
Published in: | arXiv.org 2018-06 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rossi, A Klochan, J Timoshenko, J Hudson, F E Möttönen, M Rogge, S Dzurak, A S Kashcheyevs, V Tettamanzi, G C |
description | In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz, the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states, and achieve robust current quantization up to a few gigahertz. We show that the fidelity of the electron capture depends on the sequence in which the parasitic states become available for loading, resulting in distinctive frequency dependent features in the pumped current. |
doi_str_mv | 10.48550/arxiv.1803.00791 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073889110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073889110</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-f05c75ab66ea7b44e1e38e523e90134312da6f994f8e92a983a4007484f5c9de3</originalsourceid><addsrcrecordid>eNotjs1Kw0AURgdBsNQ-gLsB14l3_pKZjSClVqFiod2Xm-SmTolJnZmI-vQGdHXgLM73MXYjINfWGLjD8OU_c2FB5QClExdsJpUSmdVSXrFFjCcAkEUpjVEzdr_2R3yjkH74zvfHjrJVR3UKQ8-34_t5UvyFGo-JGl598y0GjD75mu_S5OI1u2yxi7T455ztH1f75VO2eV0_Lx82GRoJWQumLg1WRUFYVlqTIGXJSEUOhNJKyAaL1jndWnISnVWop-_a6tbUriE1Z7d_2XMYPkaK6XAaxtBPiwcJpbLWCQHqF4LGSVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073889110</pqid></control><display><type>article</type><title>Gigahertz Single-Electron Pumping Mediated by Parasitic States</title><source>Publicly Available Content Database</source><creator>Rossi, A ; Klochan, J ; Timoshenko, J ; Hudson, F E ; Möttönen, M ; Rogge, S ; Dzurak, A S ; Kashcheyevs, V ; Tettamanzi, G C</creator><creatorcontrib>Rossi, A ; Klochan, J ; Timoshenko, J ; Hudson, F E ; Möttönen, M ; Rogge, S ; Dzurak, A S ; Kashcheyevs, V ; Tettamanzi, G C</creatorcontrib><description>In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz, the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states, and achieve robust current quantization up to a few gigahertz. We show that the fidelity of the electron capture depends on the sequence in which the parasitic states become available for loading, resulting in distinctive frequency dependent features in the pumped current.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1803.00791</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Beta decay ; Charge transfer ; Electron capture ; Electron pumping ; Pumps ; Quantum dots ; Single electrons</subject><ispartof>arXiv.org, 2018-06</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073889110?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Rossi, A</creatorcontrib><creatorcontrib>Klochan, J</creatorcontrib><creatorcontrib>Timoshenko, J</creatorcontrib><creatorcontrib>Hudson, F E</creatorcontrib><creatorcontrib>Möttönen, M</creatorcontrib><creatorcontrib>Rogge, S</creatorcontrib><creatorcontrib>Dzurak, A S</creatorcontrib><creatorcontrib>Kashcheyevs, V</creatorcontrib><creatorcontrib>Tettamanzi, G C</creatorcontrib><title>Gigahertz Single-Electron Pumping Mediated by Parasitic States</title><title>arXiv.org</title><description>In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz, the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states, and achieve robust current quantization up to a few gigahertz. We show that the fidelity of the electron capture depends on the sequence in which the parasitic states become available for loading, resulting in distinctive frequency dependent features in the pumped current.</description><subject>Accuracy</subject><subject>Beta decay</subject><subject>Charge transfer</subject><subject>Electron capture</subject><subject>Electron pumping</subject><subject>Pumps</subject><subject>Quantum dots</subject><subject>Single electrons</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjs1Kw0AURgdBsNQ-gLsB14l3_pKZjSClVqFiod2Xm-SmTolJnZmI-vQGdHXgLM73MXYjINfWGLjD8OU_c2FB5QClExdsJpUSmdVSXrFFjCcAkEUpjVEzdr_2R3yjkH74zvfHjrJVR3UKQ8-34_t5UvyFGo-JGl598y0GjD75mu_S5OI1u2yxi7T455ztH1f75VO2eV0_Lx82GRoJWQumLg1WRUFYVlqTIGXJSEUOhNJKyAaL1jndWnISnVWop-_a6tbUriE1Z7d_2XMYPkaK6XAaxtBPiwcJpbLWCQHqF4LGSVw</recordid><startdate>20180627</startdate><enddate>20180627</enddate><creator>Rossi, A</creator><creator>Klochan, J</creator><creator>Timoshenko, J</creator><creator>Hudson, F E</creator><creator>Möttönen, M</creator><creator>Rogge, S</creator><creator>Dzurak, A S</creator><creator>Kashcheyevs, V</creator><creator>Tettamanzi, G C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180627</creationdate><title>Gigahertz Single-Electron Pumping Mediated by Parasitic States</title><author>Rossi, A ; Klochan, J ; Timoshenko, J ; Hudson, F E ; Möttönen, M ; Rogge, S ; Dzurak, A S ; Kashcheyevs, V ; Tettamanzi, G C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-f05c75ab66ea7b44e1e38e523e90134312da6f994f8e92a983a4007484f5c9de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Beta decay</topic><topic>Charge transfer</topic><topic>Electron capture</topic><topic>Electron pumping</topic><topic>Pumps</topic><topic>Quantum dots</topic><topic>Single electrons</topic><toplevel>online_resources</toplevel><creatorcontrib>Rossi, A</creatorcontrib><creatorcontrib>Klochan, J</creatorcontrib><creatorcontrib>Timoshenko, J</creatorcontrib><creatorcontrib>Hudson, F E</creatorcontrib><creatorcontrib>Möttönen, M</creatorcontrib><creatorcontrib>Rogge, S</creatorcontrib><creatorcontrib>Dzurak, A S</creatorcontrib><creatorcontrib>Kashcheyevs, V</creatorcontrib><creatorcontrib>Tettamanzi, G C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rossi, A</au><au>Klochan, J</au><au>Timoshenko, J</au><au>Hudson, F E</au><au>Möttönen, M</au><au>Rogge, S</au><au>Dzurak, A S</au><au>Kashcheyevs, V</au><au>Tettamanzi, G C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gigahertz Single-Electron Pumping Mediated by Parasitic States</atitle><jtitle>arXiv.org</jtitle><date>2018-06-27</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz, the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states, and achieve robust current quantization up to a few gigahertz. We show that the fidelity of the electron capture depends on the sequence in which the parasitic states become available for loading, resulting in distinctive frequency dependent features in the pumped current.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1803.00791</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073889110 |
source | Publicly Available Content Database |
subjects | Accuracy Beta decay Charge transfer Electron capture Electron pumping Pumps Quantum dots Single electrons |
title | Gigahertz Single-Electron Pumping Mediated by Parasitic States |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gigahertz%20Single-Electron%20Pumping%20Mediated%20by%20Parasitic%20States&rft.jtitle=arXiv.org&rft.au=Rossi,%20A&rft.date=2018-06-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1803.00791&rft_dat=%3Cproquest%3E2073889110%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-f05c75ab66ea7b44e1e38e523e90134312da6f994f8e92a983a4007484f5c9de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073889110&rft_id=info:pmid/&rfr_iscdi=true |