Loading…

Investigating Galactic supernova remnant candidates with LOFAR

We investigate six supernova remnant (SNR) candidates --- G51.21+0.11, G52.37-0.70, G53.07+0.49, G53.41+0.03, G53.84-0.75, and the possible shell around G54.1-0.3 --- in the Galactic Plane using newly acquired LOw-Frequency ARray (LOFAR) High-Band Antenna (HBA) observations, as well as archival West...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-05
Main Authors: Driessen, Laura N, Domček, Vladimír, Vink, Jacco, Arias, Maria, Hessels, Jason W T, Gelfand, Joseph D
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate six supernova remnant (SNR) candidates --- G51.21+0.11, G52.37-0.70, G53.07+0.49, G53.41+0.03, G53.84-0.75, and the possible shell around G54.1-0.3 --- in the Galactic Plane using newly acquired LOw-Frequency ARray (LOFAR) High-Band Antenna (HBA) observations, as well as archival Westerbork Synthesis Radio Telescope (WSRT) and Very Large Array Galactic Plane Survey (VGPS) mosaics. We find that G52.37-0.70, G53.84-0.75, and the possible shell around pulsar wind nebula G54.1+0.3 are unlikely to be SNRs, while G53.07+0.49 remains a candidate SNR. G51.21+0.11 has a spectral index of \(\alpha=-0.7\pm0.21\), but lacks X-ray observations and as such requires further investigation to confirm its nature. We confirm one candidate, G53.41+0.03, as a new SNR because it has a shell-like morphology, a radio spectral index of \(\alpha=-0.6\pm0.2\) and it has the X-ray spectral characteristics of a 1000-8000 year old SNR. The X-ray analysis was performed using archival XMM-Newton observations, which show that G53.41+0.03 has strong emission lines and is best characterized by a non-equilibrium ionization model, consistent with an SNR interpretation. Deep Arecibo radio telescope searches for a pulsar associated with G53.41+0.03 resulted in no detection, but place stringent upper limits on the flux density of such a source if it is beamed towards Earth.
ISSN:2331-8422
DOI:10.48550/arxiv.1706.08826