Loading…

Quantum process tomography of linear and quadratically nonlinear optical systems

A central task in quantum information processing is to characterize quantum processes. In the realm of optical quantum information processing, this amounts to characterizing the transformations of the mode creation and annihilation operators. This transformation is unitary for linear optical systems...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-07
Main Authors: Jacob, Kevin Valson, Mirasola, Anthony E, Adhikari, Sushovit, Dowling, Jonathan P
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jacob, Kevin Valson
Mirasola, Anthony E
Adhikari, Sushovit
Dowling, Jonathan P
description A central task in quantum information processing is to characterize quantum processes. In the realm of optical quantum information processing, this amounts to characterizing the transformations of the mode creation and annihilation operators. This transformation is unitary for linear optical systems, whereas these yield the well-known Bogoliubov transformations for systems with Hamiltonians that are quadratic in the mode operators. In this paper, we show that a modified Mach-Zehnder interferometer can characterize both these kinds of evolutions for multimode systems. While it suffices to use coherent states for the characterization of linear optical systems, we additionally require single photons to characterize quadratically nonlinear optical systems.
doi_str_mv 10.48550/arxiv.1801.10558
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073912621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073912621</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-8c2e18311d0617a436c98a84861367b8f1c13823932862b17ef810ed858c57803</originalsourceid><addsrcrecordid>eNotjl1LwzAYhYMgOOZ-gHcBr1vzvmmSt5cy_IKBCrsfWZpqR5tsTSv231vcrg6cA895GLsDkReklHiw_W_zkwMJyEEoRVdsgVJCRgXiDVuldBBCoDaolFywj8_RhmHs-LGPzqfEh9jFr94evycea942wdue21Dx02ir3g6Ns2078RDDZYvH_46nKQ2-S7fsurZt8qtLLtn2-Wm7fs027y9v68dNZhXOMg49kASohAZjC6ldSZYK0iC12VMNDiShLCWSxj0YXxMIX5EipwwJuWT3Z-zsfRp9GnaHOPZhftyhMLIE1AjyD25DUA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073912621</pqid></control><display><type>article</type><title>Quantum process tomography of linear and quadratically nonlinear optical systems</title><source>Publicly Available Content (ProQuest)</source><creator>Jacob, Kevin Valson ; Mirasola, Anthony E ; Adhikari, Sushovit ; Dowling, Jonathan P</creator><creatorcontrib>Jacob, Kevin Valson ; Mirasola, Anthony E ; Adhikari, Sushovit ; Dowling, Jonathan P</creatorcontrib><description>A central task in quantum information processing is to characterize quantum processes. In the realm of optical quantum information processing, this amounts to characterizing the transformations of the mode creation and annihilation operators. This transformation is unitary for linear optical systems, whereas these yield the well-known Bogoliubov transformations for systems with Hamiltonians that are quadratic in the mode operators. In this paper, we show that a modified Mach-Zehnder interferometer can characterize both these kinds of evolutions for multimode systems. While it suffices to use coherent states for the characterization of linear optical systems, we additionally require single photons to characterize quadratically nonlinear optical systems.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1801.10558</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data processing ; Information processing ; Mach-Zehnder interferometers ; Nonlinear systems ; Operators ; Photons ; Quantum phenomena ; Quantum theory ; Transformations</subject><ispartof>arXiv.org, 2018-07</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073912621?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Jacob, Kevin Valson</creatorcontrib><creatorcontrib>Mirasola, Anthony E</creatorcontrib><creatorcontrib>Adhikari, Sushovit</creatorcontrib><creatorcontrib>Dowling, Jonathan P</creatorcontrib><title>Quantum process tomography of linear and quadratically nonlinear optical systems</title><title>arXiv.org</title><description>A central task in quantum information processing is to characterize quantum processes. In the realm of optical quantum information processing, this amounts to characterizing the transformations of the mode creation and annihilation operators. This transformation is unitary for linear optical systems, whereas these yield the well-known Bogoliubov transformations for systems with Hamiltonians that are quadratic in the mode operators. In this paper, we show that a modified Mach-Zehnder interferometer can characterize both these kinds of evolutions for multimode systems. While it suffices to use coherent states for the characterization of linear optical systems, we additionally require single photons to characterize quadratically nonlinear optical systems.</description><subject>Data processing</subject><subject>Information processing</subject><subject>Mach-Zehnder interferometers</subject><subject>Nonlinear systems</subject><subject>Operators</subject><subject>Photons</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Transformations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjl1LwzAYhYMgOOZ-gHcBr1vzvmmSt5cy_IKBCrsfWZpqR5tsTSv231vcrg6cA895GLsDkReklHiw_W_zkwMJyEEoRVdsgVJCRgXiDVuldBBCoDaolFywj8_RhmHs-LGPzqfEh9jFr94evycea942wdue21Dx02ir3g6Ns2078RDDZYvH_46nKQ2-S7fsurZt8qtLLtn2-Wm7fs027y9v68dNZhXOMg49kASohAZjC6ldSZYK0iC12VMNDiShLCWSxj0YXxMIX5EipwwJuWT3Z-zsfRp9GnaHOPZhftyhMLIE1AjyD25DUA0</recordid><startdate>20180711</startdate><enddate>20180711</enddate><creator>Jacob, Kevin Valson</creator><creator>Mirasola, Anthony E</creator><creator>Adhikari, Sushovit</creator><creator>Dowling, Jonathan P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180711</creationdate><title>Quantum process tomography of linear and quadratically nonlinear optical systems</title><author>Jacob, Kevin Valson ; Mirasola, Anthony E ; Adhikari, Sushovit ; Dowling, Jonathan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-8c2e18311d0617a436c98a84861367b8f1c13823932862b17ef810ed858c57803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data processing</topic><topic>Information processing</topic><topic>Mach-Zehnder interferometers</topic><topic>Nonlinear systems</topic><topic>Operators</topic><topic>Photons</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>Jacob, Kevin Valson</creatorcontrib><creatorcontrib>Mirasola, Anthony E</creatorcontrib><creatorcontrib>Adhikari, Sushovit</creatorcontrib><creatorcontrib>Dowling, Jonathan P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacob, Kevin Valson</au><au>Mirasola, Anthony E</au><au>Adhikari, Sushovit</au><au>Dowling, Jonathan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum process tomography of linear and quadratically nonlinear optical systems</atitle><jtitle>arXiv.org</jtitle><date>2018-07-11</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>A central task in quantum information processing is to characterize quantum processes. In the realm of optical quantum information processing, this amounts to characterizing the transformations of the mode creation and annihilation operators. This transformation is unitary for linear optical systems, whereas these yield the well-known Bogoliubov transformations for systems with Hamiltonians that are quadratic in the mode operators. In this paper, we show that a modified Mach-Zehnder interferometer can characterize both these kinds of evolutions for multimode systems. While it suffices to use coherent states for the characterization of linear optical systems, we additionally require single photons to characterize quadratically nonlinear optical systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1801.10558</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073912621
source Publicly Available Content (ProQuest)
subjects Data processing
Information processing
Mach-Zehnder interferometers
Nonlinear systems
Operators
Photons
Quantum phenomena
Quantum theory
Transformations
title Quantum process tomography of linear and quadratically nonlinear optical systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20process%20tomography%20of%20linear%20and%20quadratically%20nonlinear%20optical%20systems&rft.jtitle=arXiv.org&rft.au=Jacob,%20Kevin%20Valson&rft.date=2018-07-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1801.10558&rft_dat=%3Cproquest%3E2073912621%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-8c2e18311d0617a436c98a84861367b8f1c13823932862b17ef810ed858c57803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073912621&rft_id=info:pmid/&rfr_iscdi=true