Loading…
Quantum process tomography of linear and quadratically nonlinear optical systems
A central task in quantum information processing is to characterize quantum processes. In the realm of optical quantum information processing, this amounts to characterizing the transformations of the mode creation and annihilation operators. This transformation is unitary for linear optical systems...
Saved in:
Published in: | arXiv.org 2018-07 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jacob, Kevin Valson Mirasola, Anthony E Adhikari, Sushovit Dowling, Jonathan P |
description | A central task in quantum information processing is to characterize quantum processes. In the realm of optical quantum information processing, this amounts to characterizing the transformations of the mode creation and annihilation operators. This transformation is unitary for linear optical systems, whereas these yield the well-known Bogoliubov transformations for systems with Hamiltonians that are quadratic in the mode operators. In this paper, we show that a modified Mach-Zehnder interferometer can characterize both these kinds of evolutions for multimode systems. While it suffices to use coherent states for the characterization of linear optical systems, we additionally require single photons to characterize quadratically nonlinear optical systems. |
doi_str_mv | 10.48550/arxiv.1801.10558 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073912621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073912621</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-8c2e18311d0617a436c98a84861367b8f1c13823932862b17ef810ed858c57803</originalsourceid><addsrcrecordid>eNotjl1LwzAYhYMgOOZ-gHcBr1vzvmmSt5cy_IKBCrsfWZpqR5tsTSv231vcrg6cA895GLsDkReklHiw_W_zkwMJyEEoRVdsgVJCRgXiDVuldBBCoDaolFywj8_RhmHs-LGPzqfEh9jFr94evycea942wdue21Dx02ir3g6Ns2078RDDZYvH_46nKQ2-S7fsurZt8qtLLtn2-Wm7fs027y9v68dNZhXOMg49kASohAZjC6ldSZYK0iC12VMNDiShLCWSxj0YXxMIX5EipwwJuWT3Z-zsfRp9GnaHOPZhftyhMLIE1AjyD25DUA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073912621</pqid></control><display><type>article</type><title>Quantum process tomography of linear and quadratically nonlinear optical systems</title><source>Publicly Available Content (ProQuest)</source><creator>Jacob, Kevin Valson ; Mirasola, Anthony E ; Adhikari, Sushovit ; Dowling, Jonathan P</creator><creatorcontrib>Jacob, Kevin Valson ; Mirasola, Anthony E ; Adhikari, Sushovit ; Dowling, Jonathan P</creatorcontrib><description>A central task in quantum information processing is to characterize quantum processes. In the realm of optical quantum information processing, this amounts to characterizing the transformations of the mode creation and annihilation operators. This transformation is unitary for linear optical systems, whereas these yield the well-known Bogoliubov transformations for systems with Hamiltonians that are quadratic in the mode operators. In this paper, we show that a modified Mach-Zehnder interferometer can characterize both these kinds of evolutions for multimode systems. While it suffices to use coherent states for the characterization of linear optical systems, we additionally require single photons to characterize quadratically nonlinear optical systems.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1801.10558</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data processing ; Information processing ; Mach-Zehnder interferometers ; Nonlinear systems ; Operators ; Photons ; Quantum phenomena ; Quantum theory ; Transformations</subject><ispartof>arXiv.org, 2018-07</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073912621?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Jacob, Kevin Valson</creatorcontrib><creatorcontrib>Mirasola, Anthony E</creatorcontrib><creatorcontrib>Adhikari, Sushovit</creatorcontrib><creatorcontrib>Dowling, Jonathan P</creatorcontrib><title>Quantum process tomography of linear and quadratically nonlinear optical systems</title><title>arXiv.org</title><description>A central task in quantum information processing is to characterize quantum processes. In the realm of optical quantum information processing, this amounts to characterizing the transformations of the mode creation and annihilation operators. This transformation is unitary for linear optical systems, whereas these yield the well-known Bogoliubov transformations for systems with Hamiltonians that are quadratic in the mode operators. In this paper, we show that a modified Mach-Zehnder interferometer can characterize both these kinds of evolutions for multimode systems. While it suffices to use coherent states for the characterization of linear optical systems, we additionally require single photons to characterize quadratically nonlinear optical systems.</description><subject>Data processing</subject><subject>Information processing</subject><subject>Mach-Zehnder interferometers</subject><subject>Nonlinear systems</subject><subject>Operators</subject><subject>Photons</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Transformations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjl1LwzAYhYMgOOZ-gHcBr1vzvmmSt5cy_IKBCrsfWZpqR5tsTSv231vcrg6cA895GLsDkReklHiw_W_zkwMJyEEoRVdsgVJCRgXiDVuldBBCoDaolFywj8_RhmHs-LGPzqfEh9jFr94evycea942wdue21Dx02ir3g6Ns2078RDDZYvH_46nKQ2-S7fsurZt8qtLLtn2-Wm7fs027y9v68dNZhXOMg49kASohAZjC6ldSZYK0iC12VMNDiShLCWSxj0YXxMIX5EipwwJuWT3Z-zsfRp9GnaHOPZhftyhMLIE1AjyD25DUA0</recordid><startdate>20180711</startdate><enddate>20180711</enddate><creator>Jacob, Kevin Valson</creator><creator>Mirasola, Anthony E</creator><creator>Adhikari, Sushovit</creator><creator>Dowling, Jonathan P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180711</creationdate><title>Quantum process tomography of linear and quadratically nonlinear optical systems</title><author>Jacob, Kevin Valson ; Mirasola, Anthony E ; Adhikari, Sushovit ; Dowling, Jonathan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-8c2e18311d0617a436c98a84861367b8f1c13823932862b17ef810ed858c57803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data processing</topic><topic>Information processing</topic><topic>Mach-Zehnder interferometers</topic><topic>Nonlinear systems</topic><topic>Operators</topic><topic>Photons</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>Jacob, Kevin Valson</creatorcontrib><creatorcontrib>Mirasola, Anthony E</creatorcontrib><creatorcontrib>Adhikari, Sushovit</creatorcontrib><creatorcontrib>Dowling, Jonathan P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacob, Kevin Valson</au><au>Mirasola, Anthony E</au><au>Adhikari, Sushovit</au><au>Dowling, Jonathan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum process tomography of linear and quadratically nonlinear optical systems</atitle><jtitle>arXiv.org</jtitle><date>2018-07-11</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>A central task in quantum information processing is to characterize quantum processes. In the realm of optical quantum information processing, this amounts to characterizing the transformations of the mode creation and annihilation operators. This transformation is unitary for linear optical systems, whereas these yield the well-known Bogoliubov transformations for systems with Hamiltonians that are quadratic in the mode operators. In this paper, we show that a modified Mach-Zehnder interferometer can characterize both these kinds of evolutions for multimode systems. While it suffices to use coherent states for the characterization of linear optical systems, we additionally require single photons to characterize quadratically nonlinear optical systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1801.10558</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073912621 |
source | Publicly Available Content (ProQuest) |
subjects | Data processing Information processing Mach-Zehnder interferometers Nonlinear systems Operators Photons Quantum phenomena Quantum theory Transformations |
title | Quantum process tomography of linear and quadratically nonlinear optical systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20process%20tomography%20of%20linear%20and%20quadratically%20nonlinear%20optical%20systems&rft.jtitle=arXiv.org&rft.au=Jacob,%20Kevin%20Valson&rft.date=2018-07-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1801.10558&rft_dat=%3Cproquest%3E2073912621%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-8c2e18311d0617a436c98a84861367b8f1c13823932862b17ef810ed858c57803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073912621&rft_id=info:pmid/&rfr_iscdi=true |