Loading…
Direct Limits of Adèle Rings and Their Completions
The adèle ring \(\mathbb A_K\) of a global field \(K\) is a locally compact, metrizable topological ring which is complete with respect to any invariant metric on \(\mathbb A_K\). For a fixed global field \(F\) and a possibly infinite algebraic extension \(E/F\), there is a natural partial ordering...
Saved in:
Published in: | arXiv.org 2019-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kelly, James P Samuels, Charles L |
description | The adèle ring \(\mathbb A_K\) of a global field \(K\) is a locally compact, metrizable topological ring which is complete with respect to any invariant metric on \(\mathbb A_K\). For a fixed global field \(F\) and a possibly infinite algebraic extension \(E/F\), there is a natural partial ordering on \(\{\mathbb A_K:F\subseteq K\subseteq E\}\). Therefore, we may form the direct limit \[ \mathbb A_E = \varinjlim \mathbb A_K \] which provides one possible generalization of adèle rings to arbitrary algebraic extensions \(E/F\). In the case where \(E/F\) is Galois, we define an alternate generalization of the adèles, denoted \(\bar{\mathbb V}_E\), to be a certain metrizable topological ring of continuous functions on the set of places of \(E\). We show that \(\bar{\mathbb V}_E\) is isomorphic to the completion of \(\mathbb A_E\) with respect to any invariant metric and use this isomorphism to establish several topological properties of \(\mathbb A_E\). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073920397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073920397</sourcerecordid><originalsourceid>FETCH-proquest_journals_20739203973</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdsksSk0uUfDJzM0sKVbIT1NwTDm8IidVISgzL71YITEvRSEkIzWzSME5P7cgJ7UkMz-vmIeBNS0xpziVF0pzMyi7uYY4e-gWFOUXlqYWl8Rn5ZcW5QGl4o0MzI0tjQyMLc2NiVMFAA9mNC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073920397</pqid></control><display><type>article</type><title>Direct Limits of Adèle Rings and Their Completions</title><source>ProQuest - Publicly Available Content Database</source><creator>Kelly, James P ; Samuels, Charles L</creator><creatorcontrib>Kelly, James P ; Samuels, Charles L</creatorcontrib><description>The adèle ring \(\mathbb A_K\) of a global field \(K\) is a locally compact, metrizable topological ring which is complete with respect to any invariant metric on \(\mathbb A_K\). For a fixed global field \(F\) and a possibly infinite algebraic extension \(E/F\), there is a natural partial ordering on \(\{\mathbb A_K:F\subseteq K\subseteq E\}\). Therefore, we may form the direct limit \[ \mathbb A_E = \varinjlim \mathbb A_K \] which provides one possible generalization of adèle rings to arbitrary algebraic extensions \(E/F\). In the case where \(E/F\) is Galois, we define an alternate generalization of the adèles, denoted \(\bar{\mathbb V}_E\), to be a certain metrizable topological ring of continuous functions on the set of places of \(E\). We show that \(\bar{\mathbb V}_E\) is isomorphic to the completion of \(\mathbb A_E\) with respect to any invariant metric and use this isomorphism to establish several topological properties of \(\mathbb A_E\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Continuity (mathematics) ; Rings (mathematics) ; Topology</subject><ispartof>arXiv.org, 2019-12</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073920397?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Kelly, James P</creatorcontrib><creatorcontrib>Samuels, Charles L</creatorcontrib><title>Direct Limits of Adèle Rings and Their Completions</title><title>arXiv.org</title><description>The adèle ring \(\mathbb A_K\) of a global field \(K\) is a locally compact, metrizable topological ring which is complete with respect to any invariant metric on \(\mathbb A_K\). For a fixed global field \(F\) and a possibly infinite algebraic extension \(E/F\), there is a natural partial ordering on \(\{\mathbb A_K:F\subseteq K\subseteq E\}\). Therefore, we may form the direct limit \[ \mathbb A_E = \varinjlim \mathbb A_K \] which provides one possible generalization of adèle rings to arbitrary algebraic extensions \(E/F\). In the case where \(E/F\) is Galois, we define an alternate generalization of the adèles, denoted \(\bar{\mathbb V}_E\), to be a certain metrizable topological ring of continuous functions on the set of places of \(E\). We show that \(\bar{\mathbb V}_E\) is isomorphic to the completion of \(\mathbb A_E\) with respect to any invariant metric and use this isomorphism to establish several topological properties of \(\mathbb A_E\).</description><subject>Continuity (mathematics)</subject><subject>Rings (mathematics)</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdsksSk0uUfDJzM0sKVbIT1NwTDm8IidVISgzL71YITEvRSEkIzWzSME5P7cgJ7UkMz-vmIeBNS0xpziVF0pzMyi7uYY4e-gWFOUXlqYWl8Rn5ZcW5QGl4o0MzI0tjQyMLc2NiVMFAA9mNC4</recordid><startdate>20191220</startdate><enddate>20191220</enddate><creator>Kelly, James P</creator><creator>Samuels, Charles L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191220</creationdate><title>Direct Limits of Adèle Rings and Their Completions</title><author>Kelly, James P ; Samuels, Charles L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20739203973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Continuity (mathematics)</topic><topic>Rings (mathematics)</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Kelly, James P</creatorcontrib><creatorcontrib>Samuels, Charles L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, James P</au><au>Samuels, Charles L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Direct Limits of Adèle Rings and Their Completions</atitle><jtitle>arXiv.org</jtitle><date>2019-12-20</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The adèle ring \(\mathbb A_K\) of a global field \(K\) is a locally compact, metrizable topological ring which is complete with respect to any invariant metric on \(\mathbb A_K\). For a fixed global field \(F\) and a possibly infinite algebraic extension \(E/F\), there is a natural partial ordering on \(\{\mathbb A_K:F\subseteq K\subseteq E\}\). Therefore, we may form the direct limit \[ \mathbb A_E = \varinjlim \mathbb A_K \] which provides one possible generalization of adèle rings to arbitrary algebraic extensions \(E/F\). In the case where \(E/F\) is Galois, we define an alternate generalization of the adèles, denoted \(\bar{\mathbb V}_E\), to be a certain metrizable topological ring of continuous functions on the set of places of \(E\). We show that \(\bar{\mathbb V}_E\) is isomorphic to the completion of \(\mathbb A_E\) with respect to any invariant metric and use this isomorphism to establish several topological properties of \(\mathbb A_E\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073920397 |
source | ProQuest - Publicly Available Content Database |
subjects | Continuity (mathematics) Rings (mathematics) Topology |
title | Direct Limits of Adèle Rings and Their Completions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Direct%20Limits%20of%20Ad%C3%A8le%20Rings%20and%20Their%20Completions&rft.jtitle=arXiv.org&rft.au=Kelly,%20James%20P&rft.date=2019-12-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073920397%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20739203973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073920397&rft_id=info:pmid/&rfr_iscdi=true |