Loading…

Renormalization: a quasi-shuffle approach

In recent years, the usual BPHZ algorithm for renormalization in perturbative quantum field theory has been interpreted, after dimensional regularization, as a Birkhoff decomposition of characters on the Hopf algebra of Feynman graphs, with values in a Rota-Baxter algebra of amplitudes. We associate...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-07
Main Authors: Menous, Frédéric, Patras, Frédéric
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Menous, Frédéric
Patras, Frédéric
description In recent years, the usual BPHZ algorithm for renormalization in perturbative quantum field theory has been interpreted, after dimensional regularization, as a Birkhoff decomposition of characters on the Hopf algebra of Feynman graphs, with values in a Rota-Baxter algebra of amplitudes. We associate in this paper to any such algebra a universal semi-group (different in nature from the Connes-Marcolli "cosmical Galois group"). Its action on the physical amplitudes associated to Feynman graphs produces the expected operations: Bogoliubov's preparation map, extraction of divergences, renormalization. In this process a key role is played by commutative and noncommutative quasi-shuffle bialgebras whose universal properties are instrumental in encoding the renormalization process.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073989462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073989462</sourcerecordid><originalsourceid>FETCH-proquest_journals_20739894623</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDErNyy_KTczJrEosyczPs1JIVCgsTSzO1C3OKE1Ly0lVSCwoKMpPTM7gYWBNS8wpTuWF0twMym6uIc4eukDpwtLU4pL4rPzSojygVLyRgbmxpYWliZmRMXGqAAG5MNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073989462</pqid></control><display><type>article</type><title>Renormalization: a quasi-shuffle approach</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Menous, Frédéric ; Patras, Frédéric</creator><creatorcontrib>Menous, Frédéric ; Patras, Frédéric</creatorcontrib><description>In recent years, the usual BPHZ algorithm for renormalization in perturbative quantum field theory has been interpreted, after dimensional regularization, as a Birkhoff decomposition of characters on the Hopf algebra of Feynman graphs, with values in a Rota-Baxter algebra of amplitudes. We associate in this paper to any such algebra a universal semi-group (different in nature from the Connes-Marcolli "cosmical Galois group"). Its action on the physical amplitudes associated to Feynman graphs produces the expected operations: Bogoliubov's preparation map, extraction of divergences, renormalization. In this process a key role is played by commutative and noncommutative quasi-shuffle bialgebras whose universal properties are instrumental in encoding the renormalization process.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Algorithms ; Amplitudes ; Feynman diagrams ; Field theory ; Fields (mathematics) ; Graphs ; Group theory ; Quantum field theory ; Quantum theory ; Regularization</subject><ispartof>arXiv.org, 2018-07</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073989462?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Menous, Frédéric</creatorcontrib><creatorcontrib>Patras, Frédéric</creatorcontrib><title>Renormalization: a quasi-shuffle approach</title><title>arXiv.org</title><description>In recent years, the usual BPHZ algorithm for renormalization in perturbative quantum field theory has been interpreted, after dimensional regularization, as a Birkhoff decomposition of characters on the Hopf algebra of Feynman graphs, with values in a Rota-Baxter algebra of amplitudes. We associate in this paper to any such algebra a universal semi-group (different in nature from the Connes-Marcolli "cosmical Galois group"). Its action on the physical amplitudes associated to Feynman graphs produces the expected operations: Bogoliubov's preparation map, extraction of divergences, renormalization. In this process a key role is played by commutative and noncommutative quasi-shuffle bialgebras whose universal properties are instrumental in encoding the renormalization process.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Feynman diagrams</subject><subject>Field theory</subject><subject>Fields (mathematics)</subject><subject>Graphs</subject><subject>Group theory</subject><subject>Quantum field theory</subject><subject>Quantum theory</subject><subject>Regularization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDErNyy_KTczJrEosyczPs1JIVCgsTSzO1C3OKE1Ly0lVSCwoKMpPTM7gYWBNS8wpTuWF0twMym6uIc4eukDpwtLU4pL4rPzSojygVLyRgbmxpYWliZmRMXGqAAG5MNY</recordid><startdate>20180706</startdate><enddate>20180706</enddate><creator>Menous, Frédéric</creator><creator>Patras, Frédéric</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180706</creationdate><title>Renormalization: a quasi-shuffle approach</title><author>Menous, Frédéric ; Patras, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20739894623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Feynman diagrams</topic><topic>Field theory</topic><topic>Fields (mathematics)</topic><topic>Graphs</topic><topic>Group theory</topic><topic>Quantum field theory</topic><topic>Quantum theory</topic><topic>Regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>Menous, Frédéric</creatorcontrib><creatorcontrib>Patras, Frédéric</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menous, Frédéric</au><au>Patras, Frédéric</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Renormalization: a quasi-shuffle approach</atitle><jtitle>arXiv.org</jtitle><date>2018-07-06</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In recent years, the usual BPHZ algorithm for renormalization in perturbative quantum field theory has been interpreted, after dimensional regularization, as a Birkhoff decomposition of characters on the Hopf algebra of Feynman graphs, with values in a Rota-Baxter algebra of amplitudes. We associate in this paper to any such algebra a universal semi-group (different in nature from the Connes-Marcolli "cosmical Galois group"). Its action on the physical amplitudes associated to Feynman graphs produces the expected operations: Bogoliubov's preparation map, extraction of divergences, renormalization. In this process a key role is played by commutative and noncommutative quasi-shuffle bialgebras whose universal properties are instrumental in encoding the renormalization process.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073989462
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algebra
Algorithms
Amplitudes
Feynman diagrams
Field theory
Fields (mathematics)
Graphs
Group theory
Quantum field theory
Quantum theory
Regularization
title Renormalization: a quasi-shuffle approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Renormalization:%20a%20quasi-shuffle%20approach&rft.jtitle=arXiv.org&rft.au=Menous,%20Fr%C3%A9d%C3%A9ric&rft.date=2018-07-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073989462%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20739894623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073989462&rft_id=info:pmid/&rfr_iscdi=true