Loading…
Unsupervised nonparametric detection of unknown objects in noisy images based on percolation theory
We develop an unsupervised, nonparametric, and scalable statistical learning method for detection of unknown objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes and sizes in the pres...
Saved in:
Published in: | arXiv.org 2018-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Langovoy, Mikhail A Wittich, Olaf Davies, Patrick Laurie |
description | We develop an unsupervised, nonparametric, and scalable statistical learning method for detection of unknown objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes and sizes in the presence of nonparametric noise of unknown level. The noise density is assumed to be unknown and can be very irregular. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. We prove strong consistency and scalability of our method in this setup with minimal assumptions. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074044249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074044249</sourcerecordid><originalsourceid>FETCH-proquest_journals_20740442493</originalsourceid><addsrcrecordid>eNqNjEEKwjAURIMgWLR3CLguxCS1uhbFA-i6xPZXU9uk5idKb28UD-Bqhpk3MyEJF2KVbSTnM5Iitowxvi54nouEVGeDYQD31Ag1NdYMyqkevNMVrcFD5bU11DY0mLuxr2gvbQyRahNpjSPVvboC0ov6HEQ2nlW2U9-dv4F144JMG9UhpD-dk-Vhf9ods8HZRwD0ZWuDM7EqOSskk5LLrfiPegOnQUdU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074044249</pqid></control><display><type>article</type><title>Unsupervised nonparametric detection of unknown objects in noisy images based on percolation theory</title><source>Publicly Available Content Database</source><creator>Langovoy, Mikhail A ; Wittich, Olaf ; Davies, Patrick Laurie</creator><creatorcontrib>Langovoy, Mikhail A ; Wittich, Olaf ; Davies, Patrick Laurie</creatorcontrib><description>We develop an unsupervised, nonparametric, and scalable statistical learning method for detection of unknown objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes and sizes in the presence of nonparametric noise of unknown level. The noise density is assumed to be unknown and can be very irregular. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. We prove strong consistency and scalability of our method in this setup with minimal assumptions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Graph theory ; Image detection ; Object recognition ; Percolation theory ; Shape recognition</subject><ispartof>arXiv.org, 2018-07</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2074044249?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Langovoy, Mikhail A</creatorcontrib><creatorcontrib>Wittich, Olaf</creatorcontrib><creatorcontrib>Davies, Patrick Laurie</creatorcontrib><title>Unsupervised nonparametric detection of unknown objects in noisy images based on percolation theory</title><title>arXiv.org</title><description>We develop an unsupervised, nonparametric, and scalable statistical learning method for detection of unknown objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes and sizes in the presence of nonparametric noise of unknown level. The noise density is assumed to be unknown and can be very irregular. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. We prove strong consistency and scalability of our method in this setup with minimal assumptions.</description><subject>Algorithms</subject><subject>Graph theory</subject><subject>Image detection</subject><subject>Object recognition</subject><subject>Percolation theory</subject><subject>Shape recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEEKwjAURIMgWLR3CLguxCS1uhbFA-i6xPZXU9uk5idKb28UD-Bqhpk3MyEJF2KVbSTnM5Iitowxvi54nouEVGeDYQD31Ag1NdYMyqkevNMVrcFD5bU11DY0mLuxr2gvbQyRahNpjSPVvboC0ov6HEQ2nlW2U9-dv4F144JMG9UhpD-dk-Vhf9ods8HZRwD0ZWuDM7EqOSskk5LLrfiPegOnQUdU</recordid><startdate>20180712</startdate><enddate>20180712</enddate><creator>Langovoy, Mikhail A</creator><creator>Wittich, Olaf</creator><creator>Davies, Patrick Laurie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180712</creationdate><title>Unsupervised nonparametric detection of unknown objects in noisy images based on percolation theory</title><author>Langovoy, Mikhail A ; Wittich, Olaf ; Davies, Patrick Laurie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20740442493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Graph theory</topic><topic>Image detection</topic><topic>Object recognition</topic><topic>Percolation theory</topic><topic>Shape recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Langovoy, Mikhail A</creatorcontrib><creatorcontrib>Wittich, Olaf</creatorcontrib><creatorcontrib>Davies, Patrick Laurie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langovoy, Mikhail A</au><au>Wittich, Olaf</au><au>Davies, Patrick Laurie</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unsupervised nonparametric detection of unknown objects in noisy images based on percolation theory</atitle><jtitle>arXiv.org</jtitle><date>2018-07-12</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We develop an unsupervised, nonparametric, and scalable statistical learning method for detection of unknown objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes and sizes in the presence of nonparametric noise of unknown level. The noise density is assumed to be unknown and can be very irregular. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. We prove strong consistency and scalability of our method in this setup with minimal assumptions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2074044249 |
source | Publicly Available Content Database |
subjects | Algorithms Graph theory Image detection Object recognition Percolation theory Shape recognition |
title | Unsupervised nonparametric detection of unknown objects in noisy images based on percolation theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unsupervised%20nonparametric%20detection%20of%20unknown%20objects%20in%20noisy%20images%20based%20on%20percolation%20theory&rft.jtitle=arXiv.org&rft.au=Langovoy,%20Mikhail%20A&rft.date=2018-07-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074044249%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20740442493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2074044249&rft_id=info:pmid/&rfr_iscdi=true |