Loading…

Unsupervised nonparametric detection of unknown objects in noisy images based on percolation theory

We develop an unsupervised, nonparametric, and scalable statistical learning method for detection of unknown objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes and sizes in the pres...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-07
Main Authors: Langovoy, Mikhail A, Wittich, Olaf, Davies, Patrick Laurie
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Langovoy, Mikhail A
Wittich, Olaf
Davies, Patrick Laurie
description We develop an unsupervised, nonparametric, and scalable statistical learning method for detection of unknown objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes and sizes in the presence of nonparametric noise of unknown level. The noise density is assumed to be unknown and can be very irregular. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. We prove strong consistency and scalability of our method in this setup with minimal assumptions.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074044249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074044249</sourcerecordid><originalsourceid>FETCH-proquest_journals_20740442493</originalsourceid><addsrcrecordid>eNqNjEEKwjAURIMgWLR3CLguxCS1uhbFA-i6xPZXU9uk5idKb28UD-Bqhpk3MyEJF2KVbSTnM5Iitowxvi54nouEVGeDYQD31Ag1NdYMyqkevNMVrcFD5bU11DY0mLuxr2gvbQyRahNpjSPVvboC0ov6HEQ2nlW2U9-dv4F144JMG9UhpD-dk-Vhf9ods8HZRwD0ZWuDM7EqOSskk5LLrfiPegOnQUdU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074044249</pqid></control><display><type>article</type><title>Unsupervised nonparametric detection of unknown objects in noisy images based on percolation theory</title><source>Publicly Available Content Database</source><creator>Langovoy, Mikhail A ; Wittich, Olaf ; Davies, Patrick Laurie</creator><creatorcontrib>Langovoy, Mikhail A ; Wittich, Olaf ; Davies, Patrick Laurie</creatorcontrib><description>We develop an unsupervised, nonparametric, and scalable statistical learning method for detection of unknown objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes and sizes in the presence of nonparametric noise of unknown level. The noise density is assumed to be unknown and can be very irregular. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. We prove strong consistency and scalability of our method in this setup with minimal assumptions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Graph theory ; Image detection ; Object recognition ; Percolation theory ; Shape recognition</subject><ispartof>arXiv.org, 2018-07</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2074044249?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Langovoy, Mikhail A</creatorcontrib><creatorcontrib>Wittich, Olaf</creatorcontrib><creatorcontrib>Davies, Patrick Laurie</creatorcontrib><title>Unsupervised nonparametric detection of unknown objects in noisy images based on percolation theory</title><title>arXiv.org</title><description>We develop an unsupervised, nonparametric, and scalable statistical learning method for detection of unknown objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes and sizes in the presence of nonparametric noise of unknown level. The noise density is assumed to be unknown and can be very irregular. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. We prove strong consistency and scalability of our method in this setup with minimal assumptions.</description><subject>Algorithms</subject><subject>Graph theory</subject><subject>Image detection</subject><subject>Object recognition</subject><subject>Percolation theory</subject><subject>Shape recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEEKwjAURIMgWLR3CLguxCS1uhbFA-i6xPZXU9uk5idKb28UD-Bqhpk3MyEJF2KVbSTnM5Iitowxvi54nouEVGeDYQD31Ag1NdYMyqkevNMVrcFD5bU11DY0mLuxr2gvbQyRahNpjSPVvboC0ov6HEQ2nlW2U9-dv4F144JMG9UhpD-dk-Vhf9ods8HZRwD0ZWuDM7EqOSskk5LLrfiPegOnQUdU</recordid><startdate>20180712</startdate><enddate>20180712</enddate><creator>Langovoy, Mikhail A</creator><creator>Wittich, Olaf</creator><creator>Davies, Patrick Laurie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180712</creationdate><title>Unsupervised nonparametric detection of unknown objects in noisy images based on percolation theory</title><author>Langovoy, Mikhail A ; Wittich, Olaf ; Davies, Patrick Laurie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20740442493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Graph theory</topic><topic>Image detection</topic><topic>Object recognition</topic><topic>Percolation theory</topic><topic>Shape recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Langovoy, Mikhail A</creatorcontrib><creatorcontrib>Wittich, Olaf</creatorcontrib><creatorcontrib>Davies, Patrick Laurie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langovoy, Mikhail A</au><au>Wittich, Olaf</au><au>Davies, Patrick Laurie</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unsupervised nonparametric detection of unknown objects in noisy images based on percolation theory</atitle><jtitle>arXiv.org</jtitle><date>2018-07-12</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We develop an unsupervised, nonparametric, and scalable statistical learning method for detection of unknown objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes and sizes in the presence of nonparametric noise of unknown level. The noise density is assumed to be unknown and can be very irregular. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. We prove strong consistency and scalability of our method in this setup with minimal assumptions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074044249
source Publicly Available Content Database
subjects Algorithms
Graph theory
Image detection
Object recognition
Percolation theory
Shape recognition
title Unsupervised nonparametric detection of unknown objects in noisy images based on percolation theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unsupervised%20nonparametric%20detection%20of%20unknown%20objects%20in%20noisy%20images%20based%20on%20percolation%20theory&rft.jtitle=arXiv.org&rft.au=Langovoy,%20Mikhail%20A&rft.date=2018-07-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074044249%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20740442493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2074044249&rft_id=info:pmid/&rfr_iscdi=true