Loading…
Interpreting Embedding Models of Knowledge Bases: A Pedagogical Approach
Knowledge bases are employed in a variety of applications from natural language processing to semantic web search; alas, in practice their usefulness is hurt by their incompleteness. Embedding models attain state-of-the-art accuracy in knowledge base completion, but their predictions are notoriously...
Saved in:
Published in: | arXiv.org 2018-06 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Arthur Colombini Gusmão Alvaro Henrique Chaim Correia Glauber De Bona Fabio Gagliardi Cozman |
description | Knowledge bases are employed in a variety of applications from natural language processing to semantic web search; alas, in practice their usefulness is hurt by their incompleteness. Embedding models attain state-of-the-art accuracy in knowledge base completion, but their predictions are notoriously hard to interpret. In this paper, we adapt "pedagogical approaches" (from the literature on neural networks) so as to interpret embedding models by extracting weighted Horn rules from them. We show how pedagogical approaches have to be adapted to take upon the large-scale relational aspects of knowledge bases and show experimentally their strengths and weaknesses. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074054392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074054392</sourcerecordid><originalsourceid>FETCH-proquest_journals_20740543923</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_XOhZWJtm9WZhGBH00Lssd13K2mxT-v0M-oCezoFzJiRgnK-iTczYjITet5RStk5ZkvCAFCfTo-sc9o1RkD_vKOXXLlai9mBrOBv71igVwl549DvI4IpSKKuaSmjIus5ZUT0WZFoL7TH8cU6Wx_x2KKIxvwb0fdnawZkxlYymMU1ivmX8v-sD-nI7Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074054392</pqid></control><display><type>article</type><title>Interpreting Embedding Models of Knowledge Bases: A Pedagogical Approach</title><source>Publicly Available Content (ProQuest)</source><creator>Arthur Colombini Gusmão ; Alvaro Henrique Chaim Correia ; Glauber De Bona ; Fabio Gagliardi Cozman</creator><creatorcontrib>Arthur Colombini Gusmão ; Alvaro Henrique Chaim Correia ; Glauber De Bona ; Fabio Gagliardi Cozman</creatorcontrib><description>Knowledge bases are employed in a variety of applications from natural language processing to semantic web search; alas, in practice their usefulness is hurt by their incompleteness. Embedding models attain state-of-the-art accuracy in knowledge base completion, but their predictions are notoriously hard to interpret. In this paper, we adapt "pedagogical approaches" (from the literature on neural networks) so as to interpret embedding models by extracting weighted Horn rules from them. We show how pedagogical approaches have to be adapted to take upon the large-scale relational aspects of knowledge bases and show experimentally their strengths and weaknesses.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Embedding ; Knowledge base ; Model accuracy ; Natural language processing ; Neural networks ; Pedagogy ; Semantic web</subject><ispartof>arXiv.org, 2018-06</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2074054392?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Arthur Colombini Gusmão</creatorcontrib><creatorcontrib>Alvaro Henrique Chaim Correia</creatorcontrib><creatorcontrib>Glauber De Bona</creatorcontrib><creatorcontrib>Fabio Gagliardi Cozman</creatorcontrib><title>Interpreting Embedding Models of Knowledge Bases: A Pedagogical Approach</title><title>arXiv.org</title><description>Knowledge bases are employed in a variety of applications from natural language processing to semantic web search; alas, in practice their usefulness is hurt by their incompleteness. Embedding models attain state-of-the-art accuracy in knowledge base completion, but their predictions are notoriously hard to interpret. In this paper, we adapt "pedagogical approaches" (from the literature on neural networks) so as to interpret embedding models by extracting weighted Horn rules from them. We show how pedagogical approaches have to be adapted to take upon the large-scale relational aspects of knowledge bases and show experimentally their strengths and weaknesses.</description><subject>Embedding</subject><subject>Knowledge base</subject><subject>Model accuracy</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Pedagogy</subject><subject>Semantic web</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNitEKgjAUQEcQJOU_XOhZWJtm9WZhGBH00Lssd13K2mxT-v0M-oCezoFzJiRgnK-iTczYjITet5RStk5ZkvCAFCfTo-sc9o1RkD_vKOXXLlai9mBrOBv71igVwl549DvI4IpSKKuaSmjIus5ZUT0WZFoL7TH8cU6Wx_x2KKIxvwb0fdnawZkxlYymMU1ivmX8v-sD-nI7Tw</recordid><startdate>20180620</startdate><enddate>20180620</enddate><creator>Arthur Colombini Gusmão</creator><creator>Alvaro Henrique Chaim Correia</creator><creator>Glauber De Bona</creator><creator>Fabio Gagliardi Cozman</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180620</creationdate><title>Interpreting Embedding Models of Knowledge Bases: A Pedagogical Approach</title><author>Arthur Colombini Gusmão ; Alvaro Henrique Chaim Correia ; Glauber De Bona ; Fabio Gagliardi Cozman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20740543923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Embedding</topic><topic>Knowledge base</topic><topic>Model accuracy</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Pedagogy</topic><topic>Semantic web</topic><toplevel>online_resources</toplevel><creatorcontrib>Arthur Colombini Gusmão</creatorcontrib><creatorcontrib>Alvaro Henrique Chaim Correia</creatorcontrib><creatorcontrib>Glauber De Bona</creatorcontrib><creatorcontrib>Fabio Gagliardi Cozman</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arthur Colombini Gusmão</au><au>Alvaro Henrique Chaim Correia</au><au>Glauber De Bona</au><au>Fabio Gagliardi Cozman</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Interpreting Embedding Models of Knowledge Bases: A Pedagogical Approach</atitle><jtitle>arXiv.org</jtitle><date>2018-06-20</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Knowledge bases are employed in a variety of applications from natural language processing to semantic web search; alas, in practice their usefulness is hurt by their incompleteness. Embedding models attain state-of-the-art accuracy in knowledge base completion, but their predictions are notoriously hard to interpret. In this paper, we adapt "pedagogical approaches" (from the literature on neural networks) so as to interpret embedding models by extracting weighted Horn rules from them. We show how pedagogical approaches have to be adapted to take upon the large-scale relational aspects of knowledge bases and show experimentally their strengths and weaknesses.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2074054392 |
source | Publicly Available Content (ProQuest) |
subjects | Embedding Knowledge base Model accuracy Natural language processing Neural networks Pedagogy Semantic web |
title | Interpreting Embedding Models of Knowledge Bases: A Pedagogical Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Interpreting%20Embedding%20Models%20of%20Knowledge%20Bases:%20A%20Pedagogical%20Approach&rft.jtitle=arXiv.org&rft.au=Arthur%20Colombini%20Gusm%C3%A3o&rft.date=2018-06-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074054392%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20740543923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2074054392&rft_id=info:pmid/&rfr_iscdi=true |