Loading…

Determining the Optimal Random-padding Size for Rabin Cryptosystems

Rabin encryption and a secure ownership transfer protocol based on the difficulty of factorization of a public key use a small public exponent. Such encryption requires random number padding. The Coppersmith's shortpad attack works effectively on short padding, thereby allowing an adversary to...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-07
Main Authors: Kaminaga, Masahiro, Suzuki, Toshinori, Fukase, Masaharu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kaminaga, Masahiro
Suzuki, Toshinori
Fukase, Masaharu
description Rabin encryption and a secure ownership transfer protocol based on the difficulty of factorization of a public key use a small public exponent. Such encryption requires random number padding. The Coppersmith's shortpad attack works effectively on short padding, thereby allowing an adversary to extract the secret message. However, the criteria for determining the appropriate padding size remains unclear. In this paper, we derived the processing-time formula for the shortpad attack and determined the optimal random-padding size in order to achieve the desired security.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074057303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074057303</sourcerecordid><originalsourceid>FETCH-proquest_journals_20740573033</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLguxKQ17qPiTlD3JdJXTWk-5qWLenoreABXAzMzIxkXYlPsSs4XJEfsGGN8K3lViYyoPSSI1jjjHjQ9gZ5DMlb39KJd420RdNN809W8gbY-Tv5uHFVxDMnjiAksrsi81T1C_uOSrI-HmzoVIfrXAJjqzg_RTanmTJaskoIJ8d_1AQOuOj8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074057303</pqid></control><display><type>article</type><title>Determining the Optimal Random-padding Size for Rabin Cryptosystems</title><source>Publicly Available Content Database</source><creator>Kaminaga, Masahiro ; Suzuki, Toshinori ; Fukase, Masaharu</creator><creatorcontrib>Kaminaga, Masahiro ; Suzuki, Toshinori ; Fukase, Masaharu</creatorcontrib><description>Rabin encryption and a secure ownership transfer protocol based on the difficulty of factorization of a public key use a small public exponent. Such encryption requires random number padding. The Coppersmith's shortpad attack works effectively on short padding, thereby allowing an adversary to extract the secret message. However, the criteria for determining the appropriate padding size remains unclear. In this paper, we derived the processing-time formula for the shortpad attack and determined the optimal random-padding size in order to achieve the desired security.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer systems ; Cryptography ; Encryption ; Random numbers</subject><ispartof>arXiv.org, 2018-07</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2074057303?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Kaminaga, Masahiro</creatorcontrib><creatorcontrib>Suzuki, Toshinori</creatorcontrib><creatorcontrib>Fukase, Masaharu</creatorcontrib><title>Determining the Optimal Random-padding Size for Rabin Cryptosystems</title><title>arXiv.org</title><description>Rabin encryption and a secure ownership transfer protocol based on the difficulty of factorization of a public key use a small public exponent. Such encryption requires random number padding. The Coppersmith's shortpad attack works effectively on short padding, thereby allowing an adversary to extract the secret message. However, the criteria for determining the appropriate padding size remains unclear. In this paper, we derived the processing-time formula for the shortpad attack and determined the optimal random-padding size in order to achieve the desired security.</description><subject>Computer systems</subject><subject>Cryptography</subject><subject>Encryption</subject><subject>Random numbers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLguxKQ17qPiTlD3JdJXTWk-5qWLenoreABXAzMzIxkXYlPsSs4XJEfsGGN8K3lViYyoPSSI1jjjHjQ9gZ5DMlb39KJd420RdNN809W8gbY-Tv5uHFVxDMnjiAksrsi81T1C_uOSrI-HmzoVIfrXAJjqzg_RTanmTJaskoIJ8d_1AQOuOj8</recordid><startdate>20180716</startdate><enddate>20180716</enddate><creator>Kaminaga, Masahiro</creator><creator>Suzuki, Toshinori</creator><creator>Fukase, Masaharu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180716</creationdate><title>Determining the Optimal Random-padding Size for Rabin Cryptosystems</title><author>Kaminaga, Masahiro ; Suzuki, Toshinori ; Fukase, Masaharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20740573033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer systems</topic><topic>Cryptography</topic><topic>Encryption</topic><topic>Random numbers</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaminaga, Masahiro</creatorcontrib><creatorcontrib>Suzuki, Toshinori</creatorcontrib><creatorcontrib>Fukase, Masaharu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaminaga, Masahiro</au><au>Suzuki, Toshinori</au><au>Fukase, Masaharu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Determining the Optimal Random-padding Size for Rabin Cryptosystems</atitle><jtitle>arXiv.org</jtitle><date>2018-07-16</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Rabin encryption and a secure ownership transfer protocol based on the difficulty of factorization of a public key use a small public exponent. Such encryption requires random number padding. The Coppersmith's shortpad attack works effectively on short padding, thereby allowing an adversary to extract the secret message. However, the criteria for determining the appropriate padding size remains unclear. In this paper, we derived the processing-time formula for the shortpad attack and determined the optimal random-padding size in order to achieve the desired security.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074057303
source Publicly Available Content Database
subjects Computer systems
Cryptography
Encryption
Random numbers
title Determining the Optimal Random-padding Size for Rabin Cryptosystems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Determining%20the%20Optimal%20Random-padding%20Size%20for%20Rabin%20Cryptosystems&rft.jtitle=arXiv.org&rft.au=Kaminaga,%20Masahiro&rft.date=2018-07-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074057303%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20740573033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2074057303&rft_id=info:pmid/&rfr_iscdi=true