Loading…

Pushing the boundaries of parallel Deep Learning -- A practical approach

This work aims to assess the state of the art of data parallel deep neural network training, trying to identify potential research tracks to be exploited for performance improvement. Beside, it presents a design for a practical C++ library dedicated at implementing and unifying the current state of...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-06
Main Authors: Viviani, Paolo, Drocco, Maurizio, Aldinucci, Marco
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Viviani, Paolo
Drocco, Maurizio
Aldinucci, Marco
description This work aims to assess the state of the art of data parallel deep neural network training, trying to identify potential research tracks to be exploited for performance improvement. Beside, it presents a design for a practical C++ library dedicated at implementing and unifying the current state of the art methodologies for parallel training in a performance-conscious framework, allowing the user to explore novel strategies without departing significantly from its usual work-flow.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074062029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074062029</sourcerecordid><originalsourceid>FETCH-proquest_journals_20740620293</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwDsSTXnQUL3RwcHCXYz21LaGJSfP-VvABnP7h-2ciQa03cpshLkQaQq-UwqLEPNeJqK4xtN3wgrFleNg4PMl3HMA24MiTMWzgyOzgwuSH7ygl7MF5qseuJgPknLdUtysxb8gETn9divX5dDtUcuJ35DDeexv9MNEdVZmpAhXu9H_XB9WkOwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074062029</pqid></control><display><type>article</type><title>Pushing the boundaries of parallel Deep Learning -- A practical approach</title><source>Publicly Available Content (ProQuest)</source><creator>Viviani, Paolo ; Drocco, Maurizio ; Aldinucci, Marco</creator><creatorcontrib>Viviani, Paolo ; Drocco, Maurizio ; Aldinucci, Marco</creatorcontrib><description>This work aims to assess the state of the art of data parallel deep neural network training, trying to identify potential research tracks to be exploited for performance improvement. Beside, it presents a design for a practical C++ library dedicated at implementing and unifying the current state of the art methodologies for parallel training in a performance-conscious framework, allowing the user to explore novel strategies without departing significantly from its usual work-flow.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deep learning ; Neural networks ; Training ; Workflow</subject><ispartof>arXiv.org, 2018-06</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2074062029?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Viviani, Paolo</creatorcontrib><creatorcontrib>Drocco, Maurizio</creatorcontrib><creatorcontrib>Aldinucci, Marco</creatorcontrib><title>Pushing the boundaries of parallel Deep Learning -- A practical approach</title><title>arXiv.org</title><description>This work aims to assess the state of the art of data parallel deep neural network training, trying to identify potential research tracks to be exploited for performance improvement. Beside, it presents a design for a practical C++ library dedicated at implementing and unifying the current state of the art methodologies for parallel training in a performance-conscious framework, allowing the user to explore novel strategies without departing significantly from its usual work-flow.</description><subject>Deep learning</subject><subject>Neural networks</subject><subject>Training</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwDsSTXnQUL3RwcHCXYz21LaGJSfP-VvABnP7h-2ciQa03cpshLkQaQq-UwqLEPNeJqK4xtN3wgrFleNg4PMl3HMA24MiTMWzgyOzgwuSH7ygl7MF5qseuJgPknLdUtysxb8gETn9divX5dDtUcuJ35DDeexv9MNEdVZmpAhXu9H_XB9WkOwQ</recordid><startdate>20180625</startdate><enddate>20180625</enddate><creator>Viviani, Paolo</creator><creator>Drocco, Maurizio</creator><creator>Aldinucci, Marco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180625</creationdate><title>Pushing the boundaries of parallel Deep Learning -- A practical approach</title><author>Viviani, Paolo ; Drocco, Maurizio ; Aldinucci, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20740620293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Deep learning</topic><topic>Neural networks</topic><topic>Training</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Viviani, Paolo</creatorcontrib><creatorcontrib>Drocco, Maurizio</creatorcontrib><creatorcontrib>Aldinucci, Marco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viviani, Paolo</au><au>Drocco, Maurizio</au><au>Aldinucci, Marco</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pushing the boundaries of parallel Deep Learning -- A practical approach</atitle><jtitle>arXiv.org</jtitle><date>2018-06-25</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>This work aims to assess the state of the art of data parallel deep neural network training, trying to identify potential research tracks to be exploited for performance improvement. Beside, it presents a design for a practical C++ library dedicated at implementing and unifying the current state of the art methodologies for parallel training in a performance-conscious framework, allowing the user to explore novel strategies without departing significantly from its usual work-flow.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074062029
source Publicly Available Content (ProQuest)
subjects Deep learning
Neural networks
Training
Workflow
title Pushing the boundaries of parallel Deep Learning -- A practical approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pushing%20the%20boundaries%20of%20parallel%20Deep%20Learning%20--%20A%20practical%20approach&rft.jtitle=arXiv.org&rft.au=Viviani,%20Paolo&rft.date=2018-06-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074062029%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20740620293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2074062029&rft_id=info:pmid/&rfr_iscdi=true