Loading…
Pushing the boundaries of parallel Deep Learning -- A practical approach
This work aims to assess the state of the art of data parallel deep neural network training, trying to identify potential research tracks to be exploited for performance improvement. Beside, it presents a design for a practical C++ library dedicated at implementing and unifying the current state of...
Saved in:
Published in: | arXiv.org 2018-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Viviani, Paolo Drocco, Maurizio Aldinucci, Marco |
description | This work aims to assess the state of the art of data parallel deep neural network training, trying to identify potential research tracks to be exploited for performance improvement. Beside, it presents a design for a practical C++ library dedicated at implementing and unifying the current state of the art methodologies for parallel training in a performance-conscious framework, allowing the user to explore novel strategies without departing significantly from its usual work-flow. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074062029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074062029</sourcerecordid><originalsourceid>FETCH-proquest_journals_20740620293</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwDsSTXnQUL3RwcHCXYz21LaGJSfP-VvABnP7h-2ciQa03cpshLkQaQq-UwqLEPNeJqK4xtN3wgrFleNg4PMl3HMA24MiTMWzgyOzgwuSH7ygl7MF5qseuJgPknLdUtysxb8gETn9divX5dDtUcuJ35DDeexv9MNEdVZmpAhXu9H_XB9WkOwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074062029</pqid></control><display><type>article</type><title>Pushing the boundaries of parallel Deep Learning -- A practical approach</title><source>Publicly Available Content (ProQuest)</source><creator>Viviani, Paolo ; Drocco, Maurizio ; Aldinucci, Marco</creator><creatorcontrib>Viviani, Paolo ; Drocco, Maurizio ; Aldinucci, Marco</creatorcontrib><description>This work aims to assess the state of the art of data parallel deep neural network training, trying to identify potential research tracks to be exploited for performance improvement. Beside, it presents a design for a practical C++ library dedicated at implementing and unifying the current state of the art methodologies for parallel training in a performance-conscious framework, allowing the user to explore novel strategies without departing significantly from its usual work-flow.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deep learning ; Neural networks ; Training ; Workflow</subject><ispartof>arXiv.org, 2018-06</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2074062029?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Viviani, Paolo</creatorcontrib><creatorcontrib>Drocco, Maurizio</creatorcontrib><creatorcontrib>Aldinucci, Marco</creatorcontrib><title>Pushing the boundaries of parallel Deep Learning -- A practical approach</title><title>arXiv.org</title><description>This work aims to assess the state of the art of data parallel deep neural network training, trying to identify potential research tracks to be exploited for performance improvement. Beside, it presents a design for a practical C++ library dedicated at implementing and unifying the current state of the art methodologies for parallel training in a performance-conscious framework, allowing the user to explore novel strategies without departing significantly from its usual work-flow.</description><subject>Deep learning</subject><subject>Neural networks</subject><subject>Training</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwDsSTXnQUL3RwcHCXYz21LaGJSfP-VvABnP7h-2ciQa03cpshLkQaQq-UwqLEPNeJqK4xtN3wgrFleNg4PMl3HMA24MiTMWzgyOzgwuSH7ygl7MF5qseuJgPknLdUtysxb8gETn9divX5dDtUcuJ35DDeexv9MNEdVZmpAhXu9H_XB9WkOwQ</recordid><startdate>20180625</startdate><enddate>20180625</enddate><creator>Viviani, Paolo</creator><creator>Drocco, Maurizio</creator><creator>Aldinucci, Marco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180625</creationdate><title>Pushing the boundaries of parallel Deep Learning -- A practical approach</title><author>Viviani, Paolo ; Drocco, Maurizio ; Aldinucci, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20740620293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Deep learning</topic><topic>Neural networks</topic><topic>Training</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Viviani, Paolo</creatorcontrib><creatorcontrib>Drocco, Maurizio</creatorcontrib><creatorcontrib>Aldinucci, Marco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viviani, Paolo</au><au>Drocco, Maurizio</au><au>Aldinucci, Marco</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pushing the boundaries of parallel Deep Learning -- A practical approach</atitle><jtitle>arXiv.org</jtitle><date>2018-06-25</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>This work aims to assess the state of the art of data parallel deep neural network training, trying to identify potential research tracks to be exploited for performance improvement. Beside, it presents a design for a practical C++ library dedicated at implementing and unifying the current state of the art methodologies for parallel training in a performance-conscious framework, allowing the user to explore novel strategies without departing significantly from its usual work-flow.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2074062029 |
source | Publicly Available Content (ProQuest) |
subjects | Deep learning Neural networks Training Workflow |
title | Pushing the boundaries of parallel Deep Learning -- A practical approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pushing%20the%20boundaries%20of%20parallel%20Deep%20Learning%20--%20A%20practical%20approach&rft.jtitle=arXiv.org&rft.au=Viviani,%20Paolo&rft.date=2018-06-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074062029%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20740620293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2074062029&rft_id=info:pmid/&rfr_iscdi=true |