Loading…

A new characterization of the Gamma distribution and associated goodness of fit tests

We propose a class of weighted \(L_2\)-type tests of fit to the Gamma distribution. Our novel procedure is based on a fixed point property of a new transformation connected to a Steinian characterization of the family of Gamma distributions. We derive the weak limits of the statistic under the null...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-06
Main Authors: Betsch, Steffen, Ebner, Bruno
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Betsch, Steffen
Ebner, Bruno
description We propose a class of weighted \(L_2\)-type tests of fit to the Gamma distribution. Our novel procedure is based on a fixed point property of a new transformation connected to a Steinian characterization of the family of Gamma distributions. We derive the weak limits of the statistic under the null hypothesis and under contiguous alternatives. Further, we establish the global consistency of the tests and apply a parametric bootstrap technique in a Monte Carlo simulation study to show the competitiveness to existing procedures.
doi_str_mv 10.48550/arxiv.1806.06028
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074065044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074065044</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-19f05ea13b5b137250c8689e5dbafc11677637977596c99183b71f4018cad4953</originalsourceid><addsrcrecordid>eNotjs1KAzEYRYMgWGofwF3A9Yxf_pNlKVqFgpu6Lt8kGZtiJzrJqPj01p_VXVzuOZeQKwattErBDY6f6b1lFnQLGrg9IzMuBGus5PyCLEo5AADXhislZuRpSYf4Qf0eR_Q1jukLa8oDzT2t-0jXeDwiDanUMXXTb4NDoFhK9glrDPQ55zDEUn4Wfaq0xlLLJTnv8aXExX_Oyfbudru6bzaP64fVctOg4rJhrgcVkYlOdUycDoG32rqoQoe9Z0wbo4VxxiinvXPMis6wXgKzHoN0SszJ9R_2dcxv00m8O-RpHE7GHQcjQSuQUnwDsVBRbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074065044</pqid></control><display><type>article</type><title>A new characterization of the Gamma distribution and associated goodness of fit tests</title><source>Publicly Available Content Database</source><creator>Betsch, Steffen ; Ebner, Bruno</creator><creatorcontrib>Betsch, Steffen ; Ebner, Bruno</creatorcontrib><description>We propose a class of weighted \(L_2\)-type tests of fit to the Gamma distribution. Our novel procedure is based on a fixed point property of a new transformation connected to a Steinian characterization of the family of Gamma distributions. We derive the weak limits of the statistic under the null hypothesis and under contiguous alternatives. Further, we establish the global consistency of the tests and apply a parametric bootstrap technique in a Monte Carlo simulation study to show the competitiveness to existing procedures.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1806.06028</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Goodness of fit ; Monte Carlo simulation ; Null hypothesis ; Probability distribution functions ; Statistical analysis ; Statistical tests</subject><ispartof>arXiv.org, 2018-06</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2074065044?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Betsch, Steffen</creatorcontrib><creatorcontrib>Ebner, Bruno</creatorcontrib><title>A new characterization of the Gamma distribution and associated goodness of fit tests</title><title>arXiv.org</title><description>We propose a class of weighted \(L_2\)-type tests of fit to the Gamma distribution. Our novel procedure is based on a fixed point property of a new transformation connected to a Steinian characterization of the family of Gamma distributions. We derive the weak limits of the statistic under the null hypothesis and under contiguous alternatives. Further, we establish the global consistency of the tests and apply a parametric bootstrap technique in a Monte Carlo simulation study to show the competitiveness to existing procedures.</description><subject>Computer simulation</subject><subject>Goodness of fit</subject><subject>Monte Carlo simulation</subject><subject>Null hypothesis</subject><subject>Probability distribution functions</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjs1KAzEYRYMgWGofwF3A9Yxf_pNlKVqFgpu6Lt8kGZtiJzrJqPj01p_VXVzuOZeQKwattErBDY6f6b1lFnQLGrg9IzMuBGus5PyCLEo5AADXhislZuRpSYf4Qf0eR_Q1jukLa8oDzT2t-0jXeDwiDanUMXXTb4NDoFhK9glrDPQ55zDEUn4Wfaq0xlLLJTnv8aXExX_Oyfbudru6bzaP64fVctOg4rJhrgcVkYlOdUycDoG32rqoQoe9Z0wbo4VxxiinvXPMis6wXgKzHoN0SszJ9R_2dcxv00m8O-RpHE7GHQcjQSuQUnwDsVBRbQ</recordid><startdate>20180618</startdate><enddate>20180618</enddate><creator>Betsch, Steffen</creator><creator>Ebner, Bruno</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180618</creationdate><title>A new characterization of the Gamma distribution and associated goodness of fit tests</title><author>Betsch, Steffen ; Ebner, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-19f05ea13b5b137250c8689e5dbafc11677637977596c99183b71f4018cad4953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Goodness of fit</topic><topic>Monte Carlo simulation</topic><topic>Null hypothesis</topic><topic>Probability distribution functions</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><toplevel>online_resources</toplevel><creatorcontrib>Betsch, Steffen</creatorcontrib><creatorcontrib>Ebner, Bruno</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betsch, Steffen</au><au>Ebner, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new characterization of the Gamma distribution and associated goodness of fit tests</atitle><jtitle>arXiv.org</jtitle><date>2018-06-18</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We propose a class of weighted \(L_2\)-type tests of fit to the Gamma distribution. Our novel procedure is based on a fixed point property of a new transformation connected to a Steinian characterization of the family of Gamma distributions. We derive the weak limits of the statistic under the null hypothesis and under contiguous alternatives. Further, we establish the global consistency of the tests and apply a parametric bootstrap technique in a Monte Carlo simulation study to show the competitiveness to existing procedures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1806.06028</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074065044
source Publicly Available Content Database
subjects Computer simulation
Goodness of fit
Monte Carlo simulation
Null hypothesis
Probability distribution functions
Statistical analysis
Statistical tests
title A new characterization of the Gamma distribution and associated goodness of fit tests
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20characterization%20of%20the%20Gamma%20distribution%20and%20associated%20goodness%20of%20fit%20tests&rft.jtitle=arXiv.org&rft.au=Betsch,%20Steffen&rft.date=2018-06-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1806.06028&rft_dat=%3Cproquest%3E2074065044%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-19f05ea13b5b137250c8689e5dbafc11677637977596c99183b71f4018cad4953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2074065044&rft_id=info:pmid/&rfr_iscdi=true