Loading…

Waveform Optimization for Radio-Frequency Wireless Power Transfer

In this paper, we study the waveform design problem for a single-input single-output (SISO) radio-frequency (RF) wireless power transfer (WPT) system in frequency-selective channels. First, based on the actual non-linear current-voltage model of the diode at the energy receiver, we derive a semi-clo...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-03
Main Authors: Vedady Moghadam, Mohammad R, Zeng, Yong, Zhang, Rui
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we study the waveform design problem for a single-input single-output (SISO) radio-frequency (RF) wireless power transfer (WPT) system in frequency-selective channels. First, based on the actual non-linear current-voltage model of the diode at the energy receiver, we derive a semi-closed-form expression for the deliverable DC voltage in terms of the incident RF signal and hence obtain the average harvested power. Next, by adopting a multisine waveform structure for the transmit signal of the energy transmitter, we jointly design the multisine signal amplitudes and phases overall frequency tones according to the channel state information (CSI) to maximize the deliverable DC voltage or harvested power. Although our formulated problem is non-convex and difficult to solve, we propose two suboptimal solutions to it, based on the frequency-domain maximal ratio transmission (MRT) principle and the sequential convex optimization (SCP) technique, respectively. Using various simulations, the performance gain of our solutions over the existing waveform designs is shown.
ISSN:2331-8422