Loading…

On well-posedness of Bayesian data assimilation and inverse problems in Hilbert space

Bayesian inverse problem on an infinite dimensional separable Hilbert space with the whole state observed is well posed when the prior state distribution is a Gaussian probability measure and the data error covariance is a cylindric Gaussian measure whose covariance has positive lower bound. If the...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-01
Main Authors: Kasanický, Ivan, Mandel, Jan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kasanický, Ivan
Mandel, Jan
description Bayesian inverse problem on an infinite dimensional separable Hilbert space with the whole state observed is well posed when the prior state distribution is a Gaussian probability measure and the data error covariance is a cylindric Gaussian measure whose covariance has positive lower bound. If the state distribution and the data distribution are equivalent Gaussian probability measures, then the Bayesian posterior measure is not well defined. If the state covariance and the data error covariance commute, then the Bayesian posterior measure is well defined for all data vectors if and only if the data error covariance has positive lower bound, and the set of data vectors for which the Bayesian posterior measure is not well defined is dense if the data error covariance does not have positive lower bound.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074201920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074201920</sourcerecordid><originalsourceid>FETCH-proquest_journals_20742019203</originalsourceid><addsrcrecordid>eNqNi8EKgkAURYcgSMp_eNBaGEfN2haFuza1lmc-YWScsXlj0d_nog9odeGccxciUlmWJvtcqZWImXsppdqVqiiySNyvFt5kTDI6ptYSM7gOjvgh1mihxYCAzHrQBoN2FtC2oO2LPBOM3jWGBp4BVNo05APwiA_aiGWHhin-7VpsL-fbqUrmx3MiDnXvJm9nVStZ5kqmByWz_6ovyV5Ayg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074201920</pqid></control><display><type>article</type><title>On well-posedness of Bayesian data assimilation and inverse problems in Hilbert space</title><source>Publicly Available Content Database</source><creator>Kasanický, Ivan ; Mandel, Jan</creator><creatorcontrib>Kasanický, Ivan ; Mandel, Jan</creatorcontrib><description>Bayesian inverse problem on an infinite dimensional separable Hilbert space with the whole state observed is well posed when the prior state distribution is a Gaussian probability measure and the data error covariance is a cylindric Gaussian measure whose covariance has positive lower bound. If the state distribution and the data distribution are equivalent Gaussian probability measures, then the Bayesian posterior measure is not well defined. If the state covariance and the data error covariance commute, then the Bayesian posterior measure is well defined for all data vectors if and only if the data error covariance has positive lower bound, and the set of data vectors for which the Bayesian posterior measure is not well defined is dense if the data error covariance does not have positive lower bound.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Covariance ; Data assimilation ; Error analysis ; Gaussian distribution ; Hilbert space ; Inverse problems ; Lower bounds ; Well posed problems</subject><ispartof>arXiv.org, 2017-01</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2074201920?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Kasanický, Ivan</creatorcontrib><creatorcontrib>Mandel, Jan</creatorcontrib><title>On well-posedness of Bayesian data assimilation and inverse problems in Hilbert space</title><title>arXiv.org</title><description>Bayesian inverse problem on an infinite dimensional separable Hilbert space with the whole state observed is well posed when the prior state distribution is a Gaussian probability measure and the data error covariance is a cylindric Gaussian measure whose covariance has positive lower bound. If the state distribution and the data distribution are equivalent Gaussian probability measures, then the Bayesian posterior measure is not well defined. If the state covariance and the data error covariance commute, then the Bayesian posterior measure is well defined for all data vectors if and only if the data error covariance has positive lower bound, and the set of data vectors for which the Bayesian posterior measure is not well defined is dense if the data error covariance does not have positive lower bound.</description><subject>Bayesian analysis</subject><subject>Covariance</subject><subject>Data assimilation</subject><subject>Error analysis</subject><subject>Gaussian distribution</subject><subject>Hilbert space</subject><subject>Inverse problems</subject><subject>Lower bounds</subject><subject>Well posed problems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi8EKgkAURYcgSMp_eNBaGEfN2haFuza1lmc-YWScsXlj0d_nog9odeGccxciUlmWJvtcqZWImXsppdqVqiiySNyvFt5kTDI6ptYSM7gOjvgh1mihxYCAzHrQBoN2FtC2oO2LPBOM3jWGBp4BVNo05APwiA_aiGWHhin-7VpsL-fbqUrmx3MiDnXvJm9nVStZ5kqmByWz_6ovyV5Ayg</recordid><startdate>20170128</startdate><enddate>20170128</enddate><creator>Kasanický, Ivan</creator><creator>Mandel, Jan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170128</creationdate><title>On well-posedness of Bayesian data assimilation and inverse problems in Hilbert space</title><author>Kasanický, Ivan ; Mandel, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20742019203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>Covariance</topic><topic>Data assimilation</topic><topic>Error analysis</topic><topic>Gaussian distribution</topic><topic>Hilbert space</topic><topic>Inverse problems</topic><topic>Lower bounds</topic><topic>Well posed problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Kasanický, Ivan</creatorcontrib><creatorcontrib>Mandel, Jan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasanický, Ivan</au><au>Mandel, Jan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On well-posedness of Bayesian data assimilation and inverse problems in Hilbert space</atitle><jtitle>arXiv.org</jtitle><date>2017-01-28</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Bayesian inverse problem on an infinite dimensional separable Hilbert space with the whole state observed is well posed when the prior state distribution is a Gaussian probability measure and the data error covariance is a cylindric Gaussian measure whose covariance has positive lower bound. If the state distribution and the data distribution are equivalent Gaussian probability measures, then the Bayesian posterior measure is not well defined. If the state covariance and the data error covariance commute, then the Bayesian posterior measure is well defined for all data vectors if and only if the data error covariance has positive lower bound, and the set of data vectors for which the Bayesian posterior measure is not well defined is dense if the data error covariance does not have positive lower bound.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074201920
source Publicly Available Content Database
subjects Bayesian analysis
Covariance
Data assimilation
Error analysis
Gaussian distribution
Hilbert space
Inverse problems
Lower bounds
Well posed problems
title On well-posedness of Bayesian data assimilation and inverse problems in Hilbert space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20well-posedness%20of%20Bayesian%20data%20assimilation%20and%20inverse%20problems%20in%20Hilbert%20space&rft.jtitle=arXiv.org&rft.au=Kasanick%C3%BD,%20Ivan&rft.date=2017-01-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074201920%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20742019203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2074201920&rft_id=info:pmid/&rfr_iscdi=true