Loading…
Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy
Astrophysics and cosmology are rich with data. The advent of wide-area digital cameras on large aperture telescopes has led to ever more ambitious surveys of the sky. Data volumes of entire surveys a decade ago can now be acquired in a single night and real-time analysis is often desired. Thus, mode...
Saved in:
Published in: | arXiv.org 2017-04 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kremer, Jan Stensbo-Smidt, Kristoffer Gieseke, Fabian Kim Steenstrup Pedersen Igel, Christian |
description | Astrophysics and cosmology are rich with data. The advent of wide-area digital cameras on large aperture telescopes has led to ever more ambitious surveys of the sky. Data volumes of entire surveys a decade ago can now be acquired in a single night and real-time analysis is often desired. Thus, modern astronomy requires big data know-how, in particular it demands highly efficient machine learning and image analysis algorithms. But scalability is not the only challenge: Astronomy applications touch several current machine learning research questions, such as learning from biased data and dealing with label and measurement noise. We argue that this makes astronomy a great domain for computer science research, as it pushes the boundaries of data analysis. In the following, we will present this exciting application area for data scientists. We will focus on exemplary results, discuss main challenges, and highlight some recent methodological advancements in machine learning and image analysis triggered by astronomical applications. |
doi_str_mv | 10.48550/arxiv.1704.04650 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074228579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074228579</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-5040c8fd79f21a881f2abf22621ed3f7bd8812d8b8492d9d7d80bfb129d61cef3</originalsourceid><addsrcrecordid>eNotj09PwyAchomJicvcB_BG4tVW-AEFvNX5r0mNl3leaIHKslGFbnHf3hk9vXmfw5vnReiKkpIrIcitSd_hUFJJeEl4JcgZmgFjtFAc4AItct4QQqCSIASboeY-DPg9hoNL2d3g3_ZgJnOHX03_EaLDrTMphjhgEy1udmZwuI5me8whYz8mXOcpjXHcHS_RuTfb7Bb_OUerp8fV8qVo356bZd0WRoAuBOGkV95K7YEapagH03mACqizzMvOnhhY1SmuwWorrSKd7yhoW9HeeTZH13-zn2n82rs8rTfjPp2M8hqIPH1UQmr2A4DqTPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074228579</pqid></control><display><type>article</type><title>Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Kremer, Jan ; Stensbo-Smidt, Kristoffer ; Gieseke, Fabian ; Kim Steenstrup Pedersen ; Igel, Christian</creator><creatorcontrib>Kremer, Jan ; Stensbo-Smidt, Kristoffer ; Gieseke, Fabian ; Kim Steenstrup Pedersen ; Igel, Christian</creatorcontrib><description>Astrophysics and cosmology are rich with data. The advent of wide-area digital cameras on large aperture telescopes has led to ever more ambitious surveys of the sky. Data volumes of entire surveys a decade ago can now be acquired in a single night and real-time analysis is often desired. Thus, modern astronomy requires big data know-how, in particular it demands highly efficient machine learning and image analysis algorithms. But scalability is not the only challenge: Astronomy applications touch several current machine learning research questions, such as learning from biased data and dealing with label and measurement noise. We argue that this makes astronomy a great domain for computer science research, as it pushes the boundaries of data analysis. In the following, we will present this exciting application area for data scientists. We will focus on exemplary results, discuss main challenges, and highlight some recent methodological advancements in machine learning and image analysis triggered by astronomical applications.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1704.04650</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Apertures ; Artificial intelligence ; Astronomy ; Astrophysics ; Big Data ; Cosmology ; Data analysis ; Data management ; Digital cameras ; Image analysis ; Machine learning ; Noise measurement ; Sky surveys (astronomy) ; Telescopes ; Universe</subject><ispartof>arXiv.org, 2017-04</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2074228579?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Kremer, Jan</creatorcontrib><creatorcontrib>Stensbo-Smidt, Kristoffer</creatorcontrib><creatorcontrib>Gieseke, Fabian</creatorcontrib><creatorcontrib>Kim Steenstrup Pedersen</creatorcontrib><creatorcontrib>Igel, Christian</creatorcontrib><title>Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy</title><title>arXiv.org</title><description>Astrophysics and cosmology are rich with data. The advent of wide-area digital cameras on large aperture telescopes has led to ever more ambitious surveys of the sky. Data volumes of entire surveys a decade ago can now be acquired in a single night and real-time analysis is often desired. Thus, modern astronomy requires big data know-how, in particular it demands highly efficient machine learning and image analysis algorithms. But scalability is not the only challenge: Astronomy applications touch several current machine learning research questions, such as learning from biased data and dealing with label and measurement noise. We argue that this makes astronomy a great domain for computer science research, as it pushes the boundaries of data analysis. In the following, we will present this exciting application area for data scientists. We will focus on exemplary results, discuss main challenges, and highlight some recent methodological advancements in machine learning and image analysis triggered by astronomical applications.</description><subject>Algorithms</subject><subject>Apertures</subject><subject>Artificial intelligence</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Big Data</subject><subject>Cosmology</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Digital cameras</subject><subject>Image analysis</subject><subject>Machine learning</subject><subject>Noise measurement</subject><subject>Sky surveys (astronomy)</subject><subject>Telescopes</subject><subject>Universe</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj09PwyAchomJicvcB_BG4tVW-AEFvNX5r0mNl3leaIHKslGFbnHf3hk9vXmfw5vnReiKkpIrIcitSd_hUFJJeEl4JcgZmgFjtFAc4AItct4QQqCSIASboeY-DPg9hoNL2d3g3_ZgJnOHX03_EaLDrTMphjhgEy1udmZwuI5me8whYz8mXOcpjXHcHS_RuTfb7Bb_OUerp8fV8qVo356bZd0WRoAuBOGkV95K7YEapagH03mACqizzMvOnhhY1SmuwWorrSKd7yhoW9HeeTZH13-zn2n82rs8rTfjPp2M8hqIPH1UQmr2A4DqTPo</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Kremer, Jan</creator><creator>Stensbo-Smidt, Kristoffer</creator><creator>Gieseke, Fabian</creator><creator>Kim Steenstrup Pedersen</creator><creator>Igel, Christian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170415</creationdate><title>Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy</title><author>Kremer, Jan ; Stensbo-Smidt, Kristoffer ; Gieseke, Fabian ; Kim Steenstrup Pedersen ; Igel, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-5040c8fd79f21a881f2abf22621ed3f7bd8812d8b8492d9d7d80bfb129d61cef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Apertures</topic><topic>Artificial intelligence</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Big Data</topic><topic>Cosmology</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Digital cameras</topic><topic>Image analysis</topic><topic>Machine learning</topic><topic>Noise measurement</topic><topic>Sky surveys (astronomy)</topic><topic>Telescopes</topic><topic>Universe</topic><toplevel>online_resources</toplevel><creatorcontrib>Kremer, Jan</creatorcontrib><creatorcontrib>Stensbo-Smidt, Kristoffer</creatorcontrib><creatorcontrib>Gieseke, Fabian</creatorcontrib><creatorcontrib>Kim Steenstrup Pedersen</creatorcontrib><creatorcontrib>Igel, Christian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kremer, Jan</au><au>Stensbo-Smidt, Kristoffer</au><au>Gieseke, Fabian</au><au>Kim Steenstrup Pedersen</au><au>Igel, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy</atitle><jtitle>arXiv.org</jtitle><date>2017-04-15</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Astrophysics and cosmology are rich with data. The advent of wide-area digital cameras on large aperture telescopes has led to ever more ambitious surveys of the sky. Data volumes of entire surveys a decade ago can now be acquired in a single night and real-time analysis is often desired. Thus, modern astronomy requires big data know-how, in particular it demands highly efficient machine learning and image analysis algorithms. But scalability is not the only challenge: Astronomy applications touch several current machine learning research questions, such as learning from biased data and dealing with label and measurement noise. We argue that this makes astronomy a great domain for computer science research, as it pushes the boundaries of data analysis. In the following, we will present this exciting application area for data scientists. We will focus on exemplary results, discuss main challenges, and highlight some recent methodological advancements in machine learning and image analysis triggered by astronomical applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1704.04650</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2074228579 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Apertures Artificial intelligence Astronomy Astrophysics Big Data Cosmology Data analysis Data management Digital cameras Image analysis Machine learning Noise measurement Sky surveys (astronomy) Telescopes Universe |
title | Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20Universe,%20Big%20Data:%20Machine%20Learning%20and%20Image%20Analysis%20for%20Astronomy&rft.jtitle=arXiv.org&rft.au=Kremer,%20Jan&rft.date=2017-04-15&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1704.04650&rft_dat=%3Cproquest%3E2074228579%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-5040c8fd79f21a881f2abf22621ed3f7bd8812d8b8492d9d7d80bfb129d61cef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2074228579&rft_id=info:pmid/&rfr_iscdi=true |