Loading…
A data-driven workflow for predicting horizontal well production using vertical well logs
In recent work, data-driven sweet spotting technique for shale plays previously explored with vertical wells has been proposed. Here, we extend this technique to multiple formations and formalize a general data-driven workflow to facilitate feature extraction from vertical well logs and predictive m...
Saved in:
Published in: | arXiv.org 2017-05 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Guevara, Jorge Kormaksson, Matthias Zadrozny, Bianca Lu, Ligang Tolle, John Croft, Tyler Wu, Mingqi Limbeck, Jan Hohl, Detlef |
description | In recent work, data-driven sweet spotting technique for shale plays previously explored with vertical wells has been proposed. Here, we extend this technique to multiple formations and formalize a general data-driven workflow to facilitate feature extraction from vertical well logs and predictive modeling of horizontal well production. We also develop an experimental framework that facilitates model selection and validation in a realistic drilling scenario. We present some experimental results using this methodology in a field with 90 vertical wells and 98 horizontal wells, showing that it can achieve better results in terms of predictive ability than kriging of known production values. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074244229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074244229</sourcerecordid><originalsourceid>FETCH-proquest_journals_20742442293</originalsourceid><addsrcrecordid>eNqNzrEKwjAYBOAgCBbtOwScCzFprY4iig_g4lSCSWtqyK9_khZ8eiPo7nTDdwc3IRkXYlVsSs5nJPe-Z4zxdc2rSmTksqNKBlkoNIN2dAS8txZG2gLSB2plrsG4jt4AzQtckJaO2tpEoGIicDT6T2HQGMz1xxY6vyDTVlqv82_OyfJ4OO9PRdo-o_ah6SGiS9RwVpe8TP-24r_WG1UkQy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074244229</pqid></control><display><type>article</type><title>A data-driven workflow for predicting horizontal well production using vertical well logs</title><source>Publicly Available Content Database</source><creator>Guevara, Jorge ; Kormaksson, Matthias ; Zadrozny, Bianca ; Lu, Ligang ; Tolle, John ; Croft, Tyler ; Wu, Mingqi ; Limbeck, Jan ; Hohl, Detlef</creator><creatorcontrib>Guevara, Jorge ; Kormaksson, Matthias ; Zadrozny, Bianca ; Lu, Ligang ; Tolle, John ; Croft, Tyler ; Wu, Mingqi ; Limbeck, Jan ; Hohl, Detlef</creatorcontrib><description>In recent work, data-driven sweet spotting technique for shale plays previously explored with vertical wells has been proposed. Here, we extend this technique to multiple formations and formalize a general data-driven workflow to facilitate feature extraction from vertical well logs and predictive modeling of horizontal well production. We also develop an experimental framework that facilitates model selection and validation in a realistic drilling scenario. We present some experimental results using this methodology in a field with 90 vertical wells and 98 horizontal wells, showing that it can achieve better results in terms of predictive ability than kriging of known production values.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Feature extraction ; Horizontal wells ; Kriging ; Mathematical models ; Workflow</subject><ispartof>arXiv.org, 2017-05</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2074244229?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Guevara, Jorge</creatorcontrib><creatorcontrib>Kormaksson, Matthias</creatorcontrib><creatorcontrib>Zadrozny, Bianca</creatorcontrib><creatorcontrib>Lu, Ligang</creatorcontrib><creatorcontrib>Tolle, John</creatorcontrib><creatorcontrib>Croft, Tyler</creatorcontrib><creatorcontrib>Wu, Mingqi</creatorcontrib><creatorcontrib>Limbeck, Jan</creatorcontrib><creatorcontrib>Hohl, Detlef</creatorcontrib><title>A data-driven workflow for predicting horizontal well production using vertical well logs</title><title>arXiv.org</title><description>In recent work, data-driven sweet spotting technique for shale plays previously explored with vertical wells has been proposed. Here, we extend this technique to multiple formations and formalize a general data-driven workflow to facilitate feature extraction from vertical well logs and predictive modeling of horizontal well production. We also develop an experimental framework that facilitates model selection and validation in a realistic drilling scenario. We present some experimental results using this methodology in a field with 90 vertical wells and 98 horizontal wells, showing that it can achieve better results in terms of predictive ability than kriging of known production values.</description><subject>Feature extraction</subject><subject>Horizontal wells</subject><subject>Kriging</subject><subject>Mathematical models</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzrEKwjAYBOAgCBbtOwScCzFprY4iig_g4lSCSWtqyK9_khZ8eiPo7nTDdwc3IRkXYlVsSs5nJPe-Z4zxdc2rSmTksqNKBlkoNIN2dAS8txZG2gLSB2plrsG4jt4AzQtckJaO2tpEoGIicDT6T2HQGMz1xxY6vyDTVlqv82_OyfJ4OO9PRdo-o_ah6SGiS9RwVpe8TP-24r_WG1UkQy8</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Guevara, Jorge</creator><creator>Kormaksson, Matthias</creator><creator>Zadrozny, Bianca</creator><creator>Lu, Ligang</creator><creator>Tolle, John</creator><creator>Croft, Tyler</creator><creator>Wu, Mingqi</creator><creator>Limbeck, Jan</creator><creator>Hohl, Detlef</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170515</creationdate><title>A data-driven workflow for predicting horizontal well production using vertical well logs</title><author>Guevara, Jorge ; Kormaksson, Matthias ; Zadrozny, Bianca ; Lu, Ligang ; Tolle, John ; Croft, Tyler ; Wu, Mingqi ; Limbeck, Jan ; Hohl, Detlef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20742442293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Feature extraction</topic><topic>Horizontal wells</topic><topic>Kriging</topic><topic>Mathematical models</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Guevara, Jorge</creatorcontrib><creatorcontrib>Kormaksson, Matthias</creatorcontrib><creatorcontrib>Zadrozny, Bianca</creatorcontrib><creatorcontrib>Lu, Ligang</creatorcontrib><creatorcontrib>Tolle, John</creatorcontrib><creatorcontrib>Croft, Tyler</creatorcontrib><creatorcontrib>Wu, Mingqi</creatorcontrib><creatorcontrib>Limbeck, Jan</creatorcontrib><creatorcontrib>Hohl, Detlef</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guevara, Jorge</au><au>Kormaksson, Matthias</au><au>Zadrozny, Bianca</au><au>Lu, Ligang</au><au>Tolle, John</au><au>Croft, Tyler</au><au>Wu, Mingqi</au><au>Limbeck, Jan</au><au>Hohl, Detlef</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A data-driven workflow for predicting horizontal well production using vertical well logs</atitle><jtitle>arXiv.org</jtitle><date>2017-05-15</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>In recent work, data-driven sweet spotting technique for shale plays previously explored with vertical wells has been proposed. Here, we extend this technique to multiple formations and formalize a general data-driven workflow to facilitate feature extraction from vertical well logs and predictive modeling of horizontal well production. We also develop an experimental framework that facilitates model selection and validation in a realistic drilling scenario. We present some experimental results using this methodology in a field with 90 vertical wells and 98 horizontal wells, showing that it can achieve better results in terms of predictive ability than kriging of known production values.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2074244229 |
source | Publicly Available Content Database |
subjects | Feature extraction Horizontal wells Kriging Mathematical models Workflow |
title | A data-driven workflow for predicting horizontal well production using vertical well logs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20data-driven%20workflow%20for%20predicting%20horizontal%20well%20production%20using%20vertical%20well%20logs&rft.jtitle=arXiv.org&rft.au=Guevara,%20Jorge&rft.date=2017-05-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074244229%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20742442293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2074244229&rft_id=info:pmid/&rfr_iscdi=true |