Loading…
Studying Positive Speech on Twitter
We present results of empirical studies on positive speech on Twitter. By positive speech we understand speech that works for the betterment of a given situation, in this case relations between different communities in a conflict-prone country. We worked with four Twitter data sets. Through semi-man...
Saved in:
Published in: | arXiv.org 2017-02 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sokolova, Marina Sazonova, Vera Huang, Kanyi Chakraboty, Rudraneel Matwin, Stan |
description | We present results of empirical studies on positive speech on Twitter. By positive speech we understand speech that works for the betterment of a given situation, in this case relations between different communities in a conflict-prone country. We worked with four Twitter data sets. Through semi-manual opinion mining, we found that positive speech accounted for < 1% of the data . In fully automated studies, we tested two approaches: unsupervised statistical analysis, and supervised text classification based on distributed word representation. We discuss benefits and challenges of those approaches and report empirical evidence obtained in the study. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074277094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074277094</sourcerecordid><originalsourceid>FETCH-proquest_journals_20742770943</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDi4pTanMzEtXCMgvzizJLEtVCC5ITU3OUMjPUwgpzywpSS3iYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzEyNzcwNLE2PiVAEAoDguTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074277094</pqid></control><display><type>article</type><title>Studying Positive Speech on Twitter</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Sokolova, Marina ; Sazonova, Vera ; Huang, Kanyi ; Chakraboty, Rudraneel ; Matwin, Stan</creator><creatorcontrib>Sokolova, Marina ; Sazonova, Vera ; Huang, Kanyi ; Chakraboty, Rudraneel ; Matwin, Stan</creatorcontrib><description>We present results of empirical studies on positive speech on Twitter. By positive speech we understand speech that works for the betterment of a given situation, in this case relations between different communities in a conflict-prone country. We worked with four Twitter data sets. Through semi-manual opinion mining, we found that positive speech accounted for < 1% of the data . In fully automated studies, we tested two approaches: unsupervised statistical analysis, and supervised text classification based on distributed word representation. We discuss benefits and challenges of those approaches and report empirical evidence obtained in the study.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data mining ; Empirical analysis ; Freedom of speech ; Libel & slander ; Social networks ; Speech ; Statistical analysis</subject><ispartof>arXiv.org, 2017-02</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2074277094?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Sokolova, Marina</creatorcontrib><creatorcontrib>Sazonova, Vera</creatorcontrib><creatorcontrib>Huang, Kanyi</creatorcontrib><creatorcontrib>Chakraboty, Rudraneel</creatorcontrib><creatorcontrib>Matwin, Stan</creatorcontrib><title>Studying Positive Speech on Twitter</title><title>arXiv.org</title><description>We present results of empirical studies on positive speech on Twitter. By positive speech we understand speech that works for the betterment of a given situation, in this case relations between different communities in a conflict-prone country. We worked with four Twitter data sets. Through semi-manual opinion mining, we found that positive speech accounted for < 1% of the data . In fully automated studies, we tested two approaches: unsupervised statistical analysis, and supervised text classification based on distributed word representation. We discuss benefits and challenges of those approaches and report empirical evidence obtained in the study.</description><subject>Data mining</subject><subject>Empirical analysis</subject><subject>Freedom of speech</subject><subject>Libel & slander</subject><subject>Social networks</subject><subject>Speech</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDi4pTanMzEtXCMgvzizJLEtVCC5ITU3OUMjPUwgpzywpSS3iYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzEyNzcwNLE2PiVAEAoDguTg</recordid><startdate>20170224</startdate><enddate>20170224</enddate><creator>Sokolova, Marina</creator><creator>Sazonova, Vera</creator><creator>Huang, Kanyi</creator><creator>Chakraboty, Rudraneel</creator><creator>Matwin, Stan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170224</creationdate><title>Studying Positive Speech on Twitter</title><author>Sokolova, Marina ; Sazonova, Vera ; Huang, Kanyi ; Chakraboty, Rudraneel ; Matwin, Stan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20742770943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Data mining</topic><topic>Empirical analysis</topic><topic>Freedom of speech</topic><topic>Libel & slander</topic><topic>Social networks</topic><topic>Speech</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Sokolova, Marina</creatorcontrib><creatorcontrib>Sazonova, Vera</creatorcontrib><creatorcontrib>Huang, Kanyi</creatorcontrib><creatorcontrib>Chakraboty, Rudraneel</creatorcontrib><creatorcontrib>Matwin, Stan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sokolova, Marina</au><au>Sazonova, Vera</au><au>Huang, Kanyi</au><au>Chakraboty, Rudraneel</au><au>Matwin, Stan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Studying Positive Speech on Twitter</atitle><jtitle>arXiv.org</jtitle><date>2017-02-24</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We present results of empirical studies on positive speech on Twitter. By positive speech we understand speech that works for the betterment of a given situation, in this case relations between different communities in a conflict-prone country. We worked with four Twitter data sets. Through semi-manual opinion mining, we found that positive speech accounted for < 1% of the data . In fully automated studies, we tested two approaches: unsupervised statistical analysis, and supervised text classification based on distributed word representation. We discuss benefits and challenges of those approaches and report empirical evidence obtained in the study.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2074277094 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Data mining Empirical analysis Freedom of speech Libel & slander Social networks Speech Statistical analysis |
title | Studying Positive Speech on Twitter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Studying%20Positive%20Speech%20on%20Twitter&rft.jtitle=arXiv.org&rft.au=Sokolova,%20Marina&rft.date=2017-02-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074277094%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20742770943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2074277094&rft_id=info:pmid/&rfr_iscdi=true |