Loading…

Studying Positive Speech on Twitter

We present results of empirical studies on positive speech on Twitter. By positive speech we understand speech that works for the betterment of a given situation, in this case relations between different communities in a conflict-prone country. We worked with four Twitter data sets. Through semi-man...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-02
Main Authors: Sokolova, Marina, Sazonova, Vera, Huang, Kanyi, Chakraboty, Rudraneel, Matwin, Stan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sokolova, Marina
Sazonova, Vera
Huang, Kanyi
Chakraboty, Rudraneel
Matwin, Stan
description We present results of empirical studies on positive speech on Twitter. By positive speech we understand speech that works for the betterment of a given situation, in this case relations between different communities in a conflict-prone country. We worked with four Twitter data sets. Through semi-manual opinion mining, we found that positive speech accounted for < 1% of the data . In fully automated studies, we tested two approaches: unsupervised statistical analysis, and supervised text classification based on distributed word representation. We discuss benefits and challenges of those approaches and report empirical evidence obtained in the study.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074277094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074277094</sourcerecordid><originalsourceid>FETCH-proquest_journals_20742770943</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDi4pTanMzEtXCMgvzizJLEtVCC5ITU3OUMjPUwgpzywpSS3iYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzEyNzcwNLE2PiVAEAoDguTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074277094</pqid></control><display><type>article</type><title>Studying Positive Speech on Twitter</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Sokolova, Marina ; Sazonova, Vera ; Huang, Kanyi ; Chakraboty, Rudraneel ; Matwin, Stan</creator><creatorcontrib>Sokolova, Marina ; Sazonova, Vera ; Huang, Kanyi ; Chakraboty, Rudraneel ; Matwin, Stan</creatorcontrib><description>We present results of empirical studies on positive speech on Twitter. By positive speech we understand speech that works for the betterment of a given situation, in this case relations between different communities in a conflict-prone country. We worked with four Twitter data sets. Through semi-manual opinion mining, we found that positive speech accounted for &lt; 1% of the data . In fully automated studies, we tested two approaches: unsupervised statistical analysis, and supervised text classification based on distributed word representation. We discuss benefits and challenges of those approaches and report empirical evidence obtained in the study.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data mining ; Empirical analysis ; Freedom of speech ; Libel &amp; slander ; Social networks ; Speech ; Statistical analysis</subject><ispartof>arXiv.org, 2017-02</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2074277094?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Sokolova, Marina</creatorcontrib><creatorcontrib>Sazonova, Vera</creatorcontrib><creatorcontrib>Huang, Kanyi</creatorcontrib><creatorcontrib>Chakraboty, Rudraneel</creatorcontrib><creatorcontrib>Matwin, Stan</creatorcontrib><title>Studying Positive Speech on Twitter</title><title>arXiv.org</title><description>We present results of empirical studies on positive speech on Twitter. By positive speech we understand speech that works for the betterment of a given situation, in this case relations between different communities in a conflict-prone country. We worked with four Twitter data sets. Through semi-manual opinion mining, we found that positive speech accounted for &lt; 1% of the data . In fully automated studies, we tested two approaches: unsupervised statistical analysis, and supervised text classification based on distributed word representation. We discuss benefits and challenges of those approaches and report empirical evidence obtained in the study.</description><subject>Data mining</subject><subject>Empirical analysis</subject><subject>Freedom of speech</subject><subject>Libel &amp; slander</subject><subject>Social networks</subject><subject>Speech</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDi4pTanMzEtXCMgvzizJLEtVCC5ITU3OUMjPUwgpzywpSS3iYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzEyNzcwNLE2PiVAEAoDguTg</recordid><startdate>20170224</startdate><enddate>20170224</enddate><creator>Sokolova, Marina</creator><creator>Sazonova, Vera</creator><creator>Huang, Kanyi</creator><creator>Chakraboty, Rudraneel</creator><creator>Matwin, Stan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170224</creationdate><title>Studying Positive Speech on Twitter</title><author>Sokolova, Marina ; Sazonova, Vera ; Huang, Kanyi ; Chakraboty, Rudraneel ; Matwin, Stan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20742770943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Data mining</topic><topic>Empirical analysis</topic><topic>Freedom of speech</topic><topic>Libel &amp; slander</topic><topic>Social networks</topic><topic>Speech</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Sokolova, Marina</creatorcontrib><creatorcontrib>Sazonova, Vera</creatorcontrib><creatorcontrib>Huang, Kanyi</creatorcontrib><creatorcontrib>Chakraboty, Rudraneel</creatorcontrib><creatorcontrib>Matwin, Stan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sokolova, Marina</au><au>Sazonova, Vera</au><au>Huang, Kanyi</au><au>Chakraboty, Rudraneel</au><au>Matwin, Stan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Studying Positive Speech on Twitter</atitle><jtitle>arXiv.org</jtitle><date>2017-02-24</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We present results of empirical studies on positive speech on Twitter. By positive speech we understand speech that works for the betterment of a given situation, in this case relations between different communities in a conflict-prone country. We worked with four Twitter data sets. Through semi-manual opinion mining, we found that positive speech accounted for &lt; 1% of the data . In fully automated studies, we tested two approaches: unsupervised statistical analysis, and supervised text classification based on distributed word representation. We discuss benefits and challenges of those approaches and report empirical evidence obtained in the study.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074277094
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Data mining
Empirical analysis
Freedom of speech
Libel & slander
Social networks
Speech
Statistical analysis
title Studying Positive Speech on Twitter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Studying%20Positive%20Speech%20on%20Twitter&rft.jtitle=arXiv.org&rft.au=Sokolova,%20Marina&rft.date=2017-02-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074277094%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20742770943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2074277094&rft_id=info:pmid/&rfr_iscdi=true