Loading…
Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces
Recent years have heralded the introduction of metasurfaces that advantageously combine the vision of sub- wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. An important topic within metasurfaces is the tailored rainbow trapping and se...
Saved in:
Published in: | arXiv.org 2017-03 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent years have heralded the introduction of metasurfaces that advantageously combine the vision of sub- wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. An important topic within metasurfaces is the tailored rainbow trapping and selective spatial frequency separation of electromagnetic and acoustic waves using graded metasurfaces. This frequency dependent trapping and spatial frequency segregation has implications for energy concentrators and associated energy harvesting, sensing and wave filtering techniques. Different demonstrations of acoustic and electromagnetic rainbow devices have been performed, however not for deep elastic substrates that support both shear and compressional waves, together with surface Rayleigh waves; these allow not only for Rayleigh wave rainbow effects to exist but also for mode conversion from surface into bulk waves. We design, and test experimentally, a device creating not only elastic Rayleigh wave rainbow trapping, but also selective mode conversion of surface Rayleigh waves to shear waves. |
---|---|
ISSN: | 2331-8422 |