Loading…
Galaxies grow their bulges and black holes in diverse ways
Galaxies with Milky Way-like stellar masses have a wide range of bulge and black hole masses; in turn, these correlate with other properties such as star formation history. While many processes may drive bulge formation, major and minor mergers are expected to play a crucial role. Stellar halos offe...
Saved in:
Published in: | arXiv.org 2017-02 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Galaxies with Milky Way-like stellar masses have a wide range of bulge and black hole masses; in turn, these correlate with other properties such as star formation history. While many processes may drive bulge formation, major and minor mergers are expected to play a crucial role. Stellar halos offer a novel and robust measurement of galactic merger history; cosmologically-motivated models predict that mergers with larger satellites produce more massive, higher metallicity stellar halos, reproducing the recently-observed stellar halo metallicity-mass relation. We quantify the relationship between stellar halo mass and bulge or black hole prominence using a sample of eighteen Milky Way-mass galaxies with newly-available measurements of (or limits on) stellar halo properties. There is an order of magnitude range in bulge mass, and two orders of magnitude in black hole mass, at a given stellar halo mass (or, equivalently, merger history). Galaxies with low mass bulges show a wide range of quiet merger histories, implying formation mechanisms that do not require intense merging activity. Galaxies with massive 'classical' bulges and central black holes also show a wide range of merger histories. While three of these galaxies have massive stellar halos consistent with a merger origin, two do not - merging appears to have had little impact in making these two massive 'classical' bulges. Such galaxies may be ideal laboratories to study massive bulge formation through pathways such as early gas-rich accretion, violent disk instabilities or misaligned infall of gas throughout cosmic time. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1702.06116 |