Loading…

Mesoscopic fluctuations of the single-particle Green's function at Anderson transitions with Coulomb interaction

Using the two-loop analysis and the background field method we demonstrate that the local pure scaling operators without derivatives in the Finkel'stein nonlinear sigma model can be constructed by straightforward generalization of the corresponding operators for the noninteracting case. These p...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-09
Main Authors: Repin, E V, Burmistrov, I S
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Repin, E V
Burmistrov, I S
description Using the two-loop analysis and the background field method we demonstrate that the local pure scaling operators without derivatives in the Finkel'stein nonlinear sigma model can be constructed by straightforward generalization of the corresponding operators for the noninteracting case. These pure scaling operators demonstrate multifractal behavior and describe mesoscopic fluctuations of the single-particle Green's function. We determine anomalous dimensions of all such pure scaling operators in the interacting theory within the two-loop approximation.
doi_str_mv 10.48550/arxiv.1609.02699
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074810823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074810823</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-d83e497fae45d913a8a98328e0f636198cf6e8799bdb55c7e90d5aec78adb53d3</originalsourceid><addsrcrecordid>eNotUM9LwzAUDoLgmPsDvAU8eOpMk6ZNjqPoFCZedh-v6YvLqElNUvXPtzpP7-P7CY-Qm5KtKyUlu4f47T7XZc30mvFa6wuy4EKUhao4vyKrlE6MzULDpRQLMr5gCsmE0Rlqh8nkCbILPtFgaT4iTc6_DViMELMzA9JtRPR3idrJm18jhUw3vseYZpwj-OTO-S-Xj7QN0xDeO-p8xgh_gWtyaWFIuPq_S7J_fNi3T8XudfvcbnYFSC6KXgmsdGMBK9nrUoACrQRXyGwt6lIrY2tUjdZd30lpGtSsl4CmUTATohdLcnuuHWP4mDDlwylM0c-LB86aSpVMzV_5AZQfXhY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074810823</pqid></control><display><type>article</type><title>Mesoscopic fluctuations of the single-particle Green's function at Anderson transitions with Coulomb interaction</title><source>Publicly Available Content Database</source><creator>Repin, E V ; Burmistrov, I S</creator><creatorcontrib>Repin, E V ; Burmistrov, I S</creatorcontrib><description>Using the two-loop analysis and the background field method we demonstrate that the local pure scaling operators without derivatives in the Finkel'stein nonlinear sigma model can be constructed by straightforward generalization of the corresponding operators for the noninteracting case. These pure scaling operators demonstrate multifractal behavior and describe mesoscopic fluctuations of the single-particle Green's function. We determine anomalous dimensions of all such pure scaling operators in the interacting theory within the two-loop approximation.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1609.02699</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Field theory ; Green's functions ; Operators (mathematics) ; Quantum theory ; Scaling ; Variation</subject><ispartof>arXiv.org, 2016-09</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2074810823?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Repin, E V</creatorcontrib><creatorcontrib>Burmistrov, I S</creatorcontrib><title>Mesoscopic fluctuations of the single-particle Green's function at Anderson transitions with Coulomb interaction</title><title>arXiv.org</title><description>Using the two-loop analysis and the background field method we demonstrate that the local pure scaling operators without derivatives in the Finkel'stein nonlinear sigma model can be constructed by straightforward generalization of the corresponding operators for the noninteracting case. These pure scaling operators demonstrate multifractal behavior and describe mesoscopic fluctuations of the single-particle Green's function. We determine anomalous dimensions of all such pure scaling operators in the interacting theory within the two-loop approximation.</description><subject>Field theory</subject><subject>Green's functions</subject><subject>Operators (mathematics)</subject><subject>Quantum theory</subject><subject>Scaling</subject><subject>Variation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotUM9LwzAUDoLgmPsDvAU8eOpMk6ZNjqPoFCZedh-v6YvLqElNUvXPtzpP7-P7CY-Qm5KtKyUlu4f47T7XZc30mvFa6wuy4EKUhao4vyKrlE6MzULDpRQLMr5gCsmE0Rlqh8nkCbILPtFgaT4iTc6_DViMELMzA9JtRPR3idrJm18jhUw3vseYZpwj-OTO-S-Xj7QN0xDeO-p8xgh_gWtyaWFIuPq_S7J_fNi3T8XudfvcbnYFSC6KXgmsdGMBK9nrUoACrQRXyGwt6lIrY2tUjdZd30lpGtSsl4CmUTATohdLcnuuHWP4mDDlwylM0c-LB86aSpVMzV_5AZQfXhY</recordid><startdate>20160909</startdate><enddate>20160909</enddate><creator>Repin, E V</creator><creator>Burmistrov, I S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160909</creationdate><title>Mesoscopic fluctuations of the single-particle Green's function at Anderson transitions with Coulomb interaction</title><author>Repin, E V ; Burmistrov, I S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-d83e497fae45d913a8a98328e0f636198cf6e8799bdb55c7e90d5aec78adb53d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Field theory</topic><topic>Green's functions</topic><topic>Operators (mathematics)</topic><topic>Quantum theory</topic><topic>Scaling</topic><topic>Variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Repin, E V</creatorcontrib><creatorcontrib>Burmistrov, I S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Repin, E V</au><au>Burmistrov, I S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscopic fluctuations of the single-particle Green's function at Anderson transitions with Coulomb interaction</atitle><jtitle>arXiv.org</jtitle><date>2016-09-09</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Using the two-loop analysis and the background field method we demonstrate that the local pure scaling operators without derivatives in the Finkel'stein nonlinear sigma model can be constructed by straightforward generalization of the corresponding operators for the noninteracting case. These pure scaling operators demonstrate multifractal behavior and describe mesoscopic fluctuations of the single-particle Green's function. We determine anomalous dimensions of all such pure scaling operators in the interacting theory within the two-loop approximation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1609.02699</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074810823
source Publicly Available Content Database
subjects Field theory
Green's functions
Operators (mathematics)
Quantum theory
Scaling
Variation
title Mesoscopic fluctuations of the single-particle Green's function at Anderson transitions with Coulomb interaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscopic%20fluctuations%20of%20the%20single-particle%20Green's%20function%20at%20Anderson%20transitions%20with%20Coulomb%20interaction&rft.jtitle=arXiv.org&rft.au=Repin,%20E%20V&rft.date=2016-09-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1609.02699&rft_dat=%3Cproquest%3E2074810823%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-d83e497fae45d913a8a98328e0f636198cf6e8799bdb55c7e90d5aec78adb53d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2074810823&rft_id=info:pmid/&rfr_iscdi=true